Skip to main content
Log in

The Rheological Models of Becker, Scott Blair, Kolsky, Lomnitz and Jeffreys Revisited, and Implications for Wave Attenuation and Velocity Dispersion

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The rheological models of Lomnitz and Jeffreys have been widely used in earthquake seismology (to simulate a nearly constant Q medium) and to describe the creep and relaxation behavior of rocks as a function of time. Other similar models, such as those of Becker, Scott Blair and Kolsky, show similar properties, particularly the Scott Blair model describes a perfectly constant Q as a function of frequency. We first give a historical overview of the main scientists and the development and versions of the various models and priorities of discovery. Then, we clarify the relationship between the different versions of these models in terms of mathematical expressions of the complex modulus and calculate the phase velocity and quality factor Q as a function of frequency, illustrating the various special cases. In addition, we give useful hints for the numerical calculation of these moduli, which include special cases of the hypergeometric function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Aki K, Richards P (2009) Quantitative seismology, 2nd edn. University Science Books, Melville

    Google Scholar 

  • Amos DE (1990) Computation of exponential integrals of a complex argument. ACM Trans Math Softw 16(2):169–177

    Article  Google Scholar 

  • Becker R (1925) Elastische Nachwirkung und Plastizität. Z Phys 33(1):185–213

    Article  CAS  Google Scholar 

  • Becker R, Doring D (1939) Ferromagnetismus. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Bland DR (1960) The theory of linear viscoelasticity. Pergamon Press Inc, Oxford

    Google Scholar 

  • Carcione JM (2022) Wave fields in real media. Theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Carcione JM, Cavallini F, Ba J, Cheng W, Qadrouh AN (2019) On the Kramers–Kronig relations. Rheol Acta 58:21–28

    Article  CAS  Google Scholar 

  • Carcione JM, Cavallini F, Mainardi F, Hanyga A (2002) Time-domain seismic modeling of constant \(Q\)-wave propagation using fractional derivatives. Pure Appl Geophys 159(7):1719–1736

    Article  Google Scholar 

  • Christensen RM (1982) Theory of viscoelasticity, an introduction. Academic Press Inc, Cambridge

    Google Scholar 

  • Crough ST, Burford RO (1977) Empirical law for fault-creep events. Tectonophysics 42:T53–T59

    Article  Google Scholar 

  • Darby DJ, Smith EGC (1990) Power-law stress relaxation after the 1987 Edgecumbe, New Zealand, earthquake. Geophys J Int 103:561–563

    Article  Google Scholar 

  • Futterman WI (1962) Dispersive body waves. J Geophys Res 67:5279–5291

    Article  Google Scholar 

  • Griggs DT (1939) Creep of rocks. J Geol 47:225–251

    Article  CAS  Google Scholar 

  • Gross B (1953) Mathematical structure of the theories of viscoelasticity. Hermann & Cie, Paris

    Google Scholar 

  • Gurevich B, Carcione JM, (2022) Attenuation and dispersion of elastic waves in porous rocks: mechanisms and models. Soc Explor Geophys, 26

  • Hanyga A (2014) Attenuation and shock waves in linear hereditary viscoelastic media; Strick–Mainardi, Jeffreys–Lomnitz–Strick and Andrade creep compliances. Pure Appl Geophys 171:2097–2109

    Article  Google Scholar 

  • Hao Q, Greenhalgh S (2021) Nearly constant Q models of the generalized standard linear solid type and the corresponding wave equations. Geophysics 86(4):T239–T260

    Article  Google Scholar 

  • Jaishankar A, McKinley G (2012) Power-law rheology in the bulk at the interface: Quasi-properties and fractional constitutive equations. Proc R Soc A. 469(2012):0284

    Google Scholar 

  • Jeffreys H (1958) A modification of Lomnitz’s law of creep in rocks. Geophys J Roy Astr Soc 1:92–95

    Article  Google Scholar 

  • Jeffreys H (1970) Imperfections of elasticity and continental drift. Nature 225:1007–1008

    Article  CAS  Google Scholar 

  • Jeffreys H (1972) Creep in the earth and planets. Tectonophysics 13:569–581

    Article  Google Scholar 

  • Jeffreys H (1976) The Earth, Cambridge University Press, 6th edition

  • Jellinek HHG, Brill R (1956) Viscoelastic properties of ice. J Appl Phys 27(10):1198–1209

    Article  CAS  Google Scholar 

  • Kjartansson E (1979) Constant Q-wave propagation and attenuation. J Geophys Res 84:4737–4748

    Article  Google Scholar 

  • Kolsky H (1956) The propagation of stress pulses in viscoelastic solids. Phil Mag Ser 1(8):693–710

    Article  CAS  Google Scholar 

  • Kolsky H (1964) Stress waves in solid. J Sound Vib 1:88–110

    Article  Google Scholar 

  • Knopoff L (1964) Crustal stresses and seismodynamic characteristics in the upper crust. Rev Geophys 2:625–660

    Article  CAS  Google Scholar 

  • Liu HP, Anderson DL, Kanamori H (1976) Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophys J R Astron Soc 47:41–58

    Article  Google Scholar 

  • Lomnitz C (1956) Creep measurements in igneous rocks. J Geol 64:473–479

    Article  Google Scholar 

  • Lomnitz C (1957) Linear dissipation in solids. J Appl Phys 28:201–205

    Article  Google Scholar 

  • Lomnitz C (1962) Application of the logarithmic creep law to stress wave attenuation in the solid Earth. J Geophys Res 67:365–367

    Article  Google Scholar 

  • Lubliner J, Panoskaltsis VP (1992) The modified Kuhn model of linear viscoelasticty. Int J Solid Struct 29(24):3099–3112

    Article  Google Scholar 

  • Mainardi F (2022) Fractional calculus and waves in linear viscoelasticity. World Scientific, Singapore

    Book  Google Scholar 

  • Mainardi F, Masina E (2018) On modifications of the exponential integral with the Mittag–Leffler function. Fract Calc Appl Anal 21(5):1156–1169

    Article  Google Scholar 

  • Mainardi F, Masina E, Spada G (2019) A generalization of the Becker model in linear viscoelasticity: creep, relaxation and internal friction. Mech Time-Dependent Mater 23:283–294

    Article  Google Scholar 

  • Mainardi F, Spada G (2012) Becker and Lomnitz rheological models: A comparison. In: D’Amore A, Grassia L, Acierno D (Eds.), AIP (American Institute of Physics) Conf. Proc. 1459:132–135

  • Mainardi F, Spada G (2012) On the viscoelastic characterization of the Jeffreys–Lomnitz law of creep. Rheol Acta 51:783–791

    Article  CAS  Google Scholar 

  • McDonal FJ, Angona FA, Milss RL, Sengbush RL, Van Nostrand RG, White JE (1958) Attenuation of shear and compressional waves in Pierre shale. Geophysics 23:421–439

    Article  Google Scholar 

  • Müller G (1983) Rheological properties and velocity dispersion of a medium with power-law dependence of \(Q\) on frequency. J Geophys 54:20–29

    Google Scholar 

  • Navas-Palencia G (2018) Fast and accurate algorithm for the generalized exponential integral \({\rm E}_\nu (x)\) for positive real order. Numer Algorithms 77:603–630

    Article  Google Scholar 

  • Nutting PG (1921) A new general law of deformation. J Franklin Inst 191:679–685

    Article  Google Scholar 

  • Olver FWKJ (1994) The generalized exponential integral, International Series of Numerical Mathematics, book Series, vol. 119

  • Orowan E (1967) Seismic damping and creep in the mantle. Geophys J R Astr Soc 14:191–218

    Article  Google Scholar 

  • Peltier WR (1984) The rheology of the planetary interior. J Rheol 28:665–697

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1997) Numerical recipes in Fortran 77: The art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Rogosin S, Mainardi F (2014) George Scott Blair: the pioneer of fractional calculus in rheology. Commun Appl Ind Math 6(1):e481. https://doi.org/10.1685/journal.caim.481. arXiv:1404.3295

    Article  Google Scholar 

  • Savage JC, O’Neill ME (1975) The relation between the Lomnitz and Futterman theories of internal friction. J Geophys Res 80:249–25

    Article  Google Scholar 

  • Scott Blair GW, Caffyn FMV (1942) The classification of rheological properties of industrial materials in the light of power-law relations between stress, strain, and time. J Sci Instr 19:88–93

    Article  Google Scholar 

  • Shibuya K (1977) Complex propagation function: constraints on it and the mutual. Relations of some existing models. J Phys Earth 25:321–344

    Article  Google Scholar 

  • Spencer JW (1981) Stress relaxation at low frequencies in fluid-saturated rocks: attenuation and modulus dispersion. J Geophys Res 86:1803–1812

    Article  Google Scholar 

  • Strick E (1967) The determination of Q, dynamic viscosity and transient creep curves from wave propagation measurements. Geophys J R Astron Soc 13:197–208

    Article  Google Scholar 

  • Strick E (1984) Implications of Jeffreys–Lomnitz transient creep. J Geophys Res 89:437–451

    Article  Google Scholar 

  • Strick E, Mainardi F (1982) On a general class of constant-Q solids. Geophys J R Astr Soc 69:415–429

    Article  Google Scholar 

  • Tricomi FG (1954) Funzioni ipergeometriche confluenti. Consiglio Nazionale Delle Ricerche. Monografie Matematiche 1:141–175 (in Italian)

    Google Scholar 

  • Temme NM (1994) Computational aspects of incomplete gamma functions with large complex parameters. Int Ser Numer Math 119:551–562

    Google Scholar 

  • Ursin B, Toverud T (2002) Comparison of seismic dispersion and attenuation models. Stud Geophys Geod 46:293–320

    Article  Google Scholar 

  • Ursin B, Toverud T (2003) Comments on comparison of seismic dispersion and attenuation models by Ursin B. and Toverud T. Stud Geophys Geod 47:217–219

    Article  Google Scholar 

  • Wesson RL (1988) Dynamics of fault creep. J Geophys Res 93:8929–8951

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Computation of the Kummer Function

Appendix: Computation of the Kummer Function

The Kummer function is a special case of the hypergeometric function, which is based on hypergeometric series, a term introduced by John Wallis in his 1655 book Arithmetica Infinitorum.

We have coded the hypergeometric function \(_2 \textrm{F}_1 (a,b,c,z)\) in Fortran 77 (Abramowitz 1970; Press et al. 1997, p. 263), such that the Kummer function is

$$\begin{aligned} \textrm{U} (a,c,z) = \frac{\Gamma (1-c)}{\Gamma (a+1-c)} {{\mathcal {M}}} (a,c,z)+ \frac{\Gamma (c-1)}{\Gamma (a)} z^{1-c} {{\mathcal {M}}} (a+1-c,2-c,z), \ \ \ z \text{ complex }, \end{aligned}$$
(50)

where

$$\begin{aligned} {{\mathcal {M}}} (a,c,z) = \textrm{lim}_{b \rightarrow \infty } \ _2 \textrm{F}_1 \left( a,b,c,\frac{z}{b}\right) \end{aligned}$$
(51)

is the confluent hypergeometric function. Then,

$$\begin{aligned} \textrm{U} (1,2+r,\textrm{i}{\bar{f}}) = \frac{\Gamma (-1-r)}{\Gamma (-r)} {{\mathcal {M}}} (1,2+r,\textrm{i}{\bar{f}})+ \frac{\Gamma (1+r)}{\Gamma (1)} (\textrm{i}{\bar{f}})^{-1-r} {{\mathcal {M}}} (-r,-r,\textrm{i}{\bar{f}}) \end{aligned}$$
(52)

or

$$\begin{aligned} \textrm{U} (1,2+r,\textrm{i}{\bar{f}}) = \frac{\Gamma (-1-r)}{\Gamma (-r)} \ {_2 \textrm{F}_1} \left( 1,b,2+r,\frac{\textrm{i}{\bar{f}}}{b}\right) + \frac{\Gamma (1+r)}{\Gamma (1)} (\textrm{i}{\bar{f}})^{-1-r} \ {_2\textrm{F}_1} \left( -r,b,-r,\frac{\textrm{i}{\bar{f}}}{b}\right) , \end{aligned}$$
(53)

provided that b is very large.

The Kummer function can also be used to compute the sine and cosine integrals, namely Eq. (43), and

$$\begin{aligned} \textrm{Si}(z) = \frac{\pi }{2}+ \textrm{Im} [\textrm{E}_1 (z)], \ \ \ \textrm{and} \ \ \ \textrm{Ci}(z) = - \textrm{Re} [\textrm{E}_1 (z)], \end{aligned}$$
(54)

where \(\textrm{E}_1 (z) = \exp (-z) \textrm{U}(1,1,z) = \Gamma (0,z)\) (Amos 1990).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carcione, J.M., Mainardi, F., Qadrouh, A.N. et al. The Rheological Models of Becker, Scott Blair, Kolsky, Lomnitz and Jeffreys Revisited, and Implications for Wave Attenuation and Velocity Dispersion. Surv Geophys (2024). https://doi.org/10.1007/s10712-024-09830-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10712-024-09830-2

Keywords

Navigation