Skip to main content
Log in

On the viscoelastic characterization of the Jeffreys–Lomnitz law of creep

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In 1958, Jeffreys (Geophys J R Astron Soc 1:92–95) proposed a power law of creep, generalizing the logarithmic law earlier introduced by Lomnitz, to broaden the geophysical applications to fluid-like materials including igneous rocks. This generalized law, however, can be applied also to solid-like viscoelastic materials. We revisit the Jeffreys–Lomnitz law of creep by allowing its power law exponent α, usually limited to the range 0 ≤ α ≤ 1 to all negative values. This is consistent with the linear theory of viscoelasticity because the creep function still remains a Bernstein function, that is positive with a completely monotone derivative, with a related spectrum of retardation times. The complete range α ≤ 1 yields a continuous transition from a Hooke elastic solid with no creep \(\left(\alpha \,\to\, -\infty\right)\) to a Maxwell fluid with linear creep \(\left(\alpha \,=\,1\right)\) passing through the Lomnitz viscoelastic body with logarithmic creep \(\left(\alpha\, =0\right)\), which separates solid-like from fluid-like behaviors. Furthermore, we numerically compute the relaxation modulus and provide the analytical expression of the spectrum of retardation times corresponding to the Jeffreys–Lomnitz creep law extended to all α ≤ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For the most relevant properties of the Laplace transform, we refer, e.g., to the Appendix (Eq. 32) of the well-known treatise by Tschoegl (1989, pp. 560–570). In the following, we use the notation \(f(t)\,\div\, \widetilde f(s)\) to denote the juxtaposition of an original function f(t) with its Laplace transform \(\widetilde f(s)\).

References

  • Bažant ZP, Kim SS (1979) Approximate relaxation function for concrete. J Struct ASCE 105(12):2695–2705

    Google Scholar 

  • Bažant ZP, Prasannan S (1989) Solidification theory for concrete creep. I: formulaton. Int Engrg Mech ASCE 115(8):1691–1703

    Article  Google Scholar 

  • Bažant ZP, Prasannan S (1989) Solidification theory for concrete creep. II: verification and application. Int Engrg Mech ASCE 115(8):1704–1725

    Article  Google Scholar 

  • Bažant ZP, Xi Yu (1995) Continuous retardation spectrum for solidification theory of concrete creep. Int Engrg Mech ASCE 121(2):281–288

    Article  Google Scholar 

  • Berg Ch, Forst G (1975) Potential theory on locally compact abelian groups. Springer, Berlin

    Book  Google Scholar 

  • Bland DR (1960) The theory of linear viscoelasticity. Pergamon, Oxford

    Google Scholar 

  • Christensen RM (1982) Theory of viscoelasticity, 2nd edn. Academic Press, New York

    Google Scholar 

  • Crough ST, Burford RO (1977) Empirical law for fault-creep events. Tectonophisics 42(1):T53–T59

    Article  Google Scholar 

  • Darby DJ, Smith EGC (1990) Power-law stress relaxation after the 1987 Edgecumbe, New Zealand, earthquake. Geophys J Int 103(2):561–563

    Article  Google Scholar 

  • Del Piero G, Deseri L (1995) Monotonic, completely monotonic, and exponential relaxation in linear viscoelasticity. Q Appl Math 53(2):273–300

    Google Scholar 

  • Emri I (2005) Rheology of solid polymers. Rheology reviews, British society of rheology

  • Emri I, Tschoegl NW (1993) Generating line spectra from experimental responses. Part I: relaxation modulus and creep compliance. Rheol Acta 32(3):311–321

    Article  CAS  Google Scholar 

  • Emri I, Tschoegl NW (1994) Generating line spectra from experimental responses. Part IV: application to experimental data. Rheol Acta 33(1):60–70

    Article  CAS  Google Scholar 

  • Emri I, Tschoegl NW (1997) Generating line spectra from experimental responses. Part V: time-dependent viscosity. Rheol Acta 36(3):303–306

    CAS  Google Scholar 

  • Emri I, von Bernstorff BS, Cvelbar R, Nikonov A (2005) Re-examination of the approximation methods for interconversion between frequency- and time-dependent material functions. J Non-Newton Fluid Mech 129(2):75–84

    Article  CAS  Google Scholar 

  • Feller W (1971) An Introduction to probability theory and its applications. Vol. II, Second Edition, Wiley, New York

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 2nd edn. Wiley, New York

    Google Scholar 

  • Gripenberg G, Londen SO, Staffans OJ (1990) Volterra integral and functional equations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gross B (1953) Mathematical structure of the theories of viscoelasticity. Hermann, Paris

    Google Scholar 

  • Hanyga A. (2005) Viscous dissipation and completely monotonic relaxation moduli. Rheol Acta 44(6):614–621

    Article  CAS  Google Scholar 

  • Hopkins IL, Hamming RW (1957) On creep and relaxation. J Appl Phys 28:906–909

    Article  CAS  Google Scholar 

  • Hopkins IL, Hamming RW (1958) Note on paper “On creep and relaxation”. J Appl Phys 29:742

    Article  Google Scholar 

  • Jeffreys H (1958) A modification of Lomnitz’s law of creep in rocks. Geophys J R Astron Soc 1:92–95

    Article  Google Scholar 

  • Jeffreys H (1958) The earth, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Jeffreys H, Crampin S (1960) Rock creep: a correction. Mon Not R Astron Soc 121:571–577

    Google Scholar 

  • Jeffreys H, Crampin S (1970) On the modified Lomnitz law of damping. Mon Not R Astron Soc 147:295–301

    Google Scholar 

  • Lin Yn-H (2011) Polymer viscoelasticity, 2nd edn. World Scientific, Singapore

    Google Scholar 

  • Lomnitz C (1956) Creep measurements in igneous rocks. J Geol 64:473–479

    Article  Google Scholar 

  • Lomnitz C (1957) Linear dissipation in solids. J Appl Phys 28:201–205

    Article  Google Scholar 

  • Lomnitz C (1962) Application of the logarithmic creep law to stress wave attenuation in the solid Earth. J Geophys Res 67:365–367

    Article  Google Scholar 

  • Mainardi F, Mura A, Gorenflo R, Stojanovic M (2007) The two forms of fractional relaxation of distributed order. J Vib Control 13(9–10):1249–1268

    Article  Google Scholar 

  • Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College, World Scientific, London

    Book  Google Scholar 

  • Molinari A (1975) Linear viscoelasticity and completely monotonic functions. J Mech 12(4):541–553

    Google Scholar 

  • Park SW, Schapery RA (1998) Methods of interconversion between linear viscoelastic material functions. Part I—a numerical method based on Prony series. Int J Solids Struct 36(11):1653–1675

    Article  Google Scholar 

  • Pipkin AC (1986) Lectures on viscoelastic theory, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1986) Fortran recipes in Fortran 77—the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Ranalli G (1987) Rheology of the Earth. Allen and Unwin, London

    Google Scholar 

  • Schapery RA, Park SW (1999) Methods of interconversion between linear viscoelastic material functions. Part II—an approximate analytical method. Int J Solids Struct 36(1):1677–1699

    Article  Google Scholar 

  • Schilling RL, Song R, Vondracek Z (2010) Bernstein functions: theory and applications. De Gruyter, Berlin

    Google Scholar 

  • Spencer JW (1981) Stress relaxation at low frequencies in fluid-saturated rocks: attenuation and modulus dispersion. J Geophys Res 86(B3):1803–1812

    Article  Google Scholar 

  • Strick E (1984) Implications of Jeffreys–Lomnitz transient creep. J Geophys Res 89(B1):437–451

    Article  Google Scholar 

  • Tschoegl NW (1971) A general method for the determination of approximations to the spectral distributions from transient response functions. Rheol Acta 10:595–600

    Google Scholar 

  • Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior: an introduction. Springer, Berlin

    Book  Google Scholar 

  • Tschoegl NW (1997) Time dependence in material properties: an overview. Mech Time–Depend Mat 1(1):3–31

    Article  Google Scholar 

  • Tschoegl NW, Emri I (1992) Generating line spectra from experimental responses. III. Interconversion between relaxation and retardation behavior. Int J Polym Mater 18(1–2):117–127

    Article  CAS  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools released. Eos Trans Amer Geophys Union 79:579

    Article  Google Scholar 

  • Wesson RL (1988) Dynamics of fault creep. J Geophys Res 93(B8):8929–8951

    Article  Google Scholar 

  • Zi G, Bažant ZP (2001) Continuous relaxation spectrum of concrete creep and its incorporation into microplane model M4. In: Ulm FJ, Bažant ZP, Wittmann FH (eds) Creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

FM would like to remind his personal contacts with Sir Harold Jeffreys (in 1973–1974) and with Prof. Ellis Strick (in 1980–1984) who, in some way, even if after so many years, have inspired this research work. GS acknowledges COST Action ES0701 “Improved Constraints on Models of Glacial Isostatic Adjustment”. We are grateful to two anonymous reviewers for helpful suggestions. The figures have been drawn using the generic mapping tools public domain software of Wessel and Smith (1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Mainardi.

Appendix: The Post–Widder formula for the retardation spectrum

Appendix: The Post–Widder formula for the retardation spectrum

The Post–Widder formula provides the original function f(t) from its Laplace transform \(\widetilde f(s)\), known with all its derivatives on the real semiaxis of the complex Laplace plane, via a limit of infinite sequence as

$$ f(t) = {{\displaystyle} \lim\limits_{n \to \infty} \frac{(-1)^n}{n!} \left[ s^{n+1}\, {\widetilde f}^{(n)}(s)\right]_{s={n}/{t}}} \label{eq:29} $$
(30)

where \({\widetilde f}^{(n)}\) is the n–th derivative of \(\widetilde{f}\) with respect to the Laplace variable s. This is the case when the Laplace transform is proved to be an analytic function on the right-half s-plane. For other details, we refer, e.g., to Tschoegl (1989).

The purpose of this Appendix is to prove the validity of Eq. 27 by using (in a suitable way) the Post–Widder formula. In our case, denoting in Eq. 31 t by γ and s by ξ, we must verify that

$$ f(\gamma)= {{\displaystyle} \lim\limits_{n \to \infty} \frac{(-1)^n}{n!} \left[ \xi^{n+1}\, {\widetilde f}^{(n)}(\xi)\right]_{\xi=n/\gamma}}= \frac{1}{\Gamma(1-\alpha)} \frac{{\rm e}^{-\gamma}}{\gamma^\alpha}\,, \label{eq:30} $$
(31)

with \({\widetilde f}(\xi) := (\xi+1)^{\alpha-1}\) and α < 1. Now

$$\begin{array}{rll} {\widetilde f}^{(n)}(\xi) &=& (-1)^n\, \frac{\Gamma(n-\alpha+1)}{\Gamma(1-\alpha)}\, (\xi + 1)^{\alpha -n -1}\,,\\ {\quad} n &=&1,2, \dots \label{eq:31} \end{array} $$
(32)

so we get

$$ \lim\limits_{n \to \infty} \frac{1}{\Gamma(1-\alpha)}\, \frac{\Gamma(n-\alpha +1)}{\Gamma(n+1)}\, \left(\frac{n}{\gamma}\right)^{n+1}\, \left(1+ \frac{n}{\gamma}\right)^{\alpha-n-1}\,. \label{eq:32} $$
(33)

We easily recognize from Stirling asymptotic formula that for n → ∞

$$ \frac{\Gamma(n-\alpha +1)}{\Gamma(n+1)}\sim n^{-\alpha}\,. \label{eq:33} $$
(34)

Because

$$ \left(\frac{n}{\gamma}\right)^{n+1}\,\left(1+ \frac{n}{\gamma}\right)^{\alpha-n-1} = \left(\frac{n}{\gamma}\right)^\alpha \,\left(1 + \frac{\gamma}{n}\right)^{\alpha-n-1} \label{eq:34} $$
(35)

we finally get

$$\begin{array}{rll} f(\gamma) & = & \frac{1}{\Gamma(1-\alpha)\, \gamma^\alpha}\, \lim\limits_{n \to \infty} \left(1+ \frac{\gamma}{n}\right)^{-n}\, \left(1+ \frac{\gamma}{n}\right)^{\alpha-1} \\ & = & \frac{1}{\Gamma(1-\alpha)} \frac{{\rm e}^{-\gamma}}{\gamma^\alpha}\,, \label{eq:35} \end{array} $$
(36)

in view of the Neper limit

$$ \lim\limits_{n \to \infty} \left(1+ \frac{1}{n}\right)^{n} = {\rm{e}}\,. \label{eq:36} $$
(37)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainardi, F., Spada, G. On the viscoelastic characterization of the Jeffreys–Lomnitz law of creep. Rheol Acta 51, 783–791 (2012). https://doi.org/10.1007/s00397-012-0634-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0634-x

Keywords

Navigation