Skip to main content
Log in

Attenuation and Shock Waves in Linear Hereditary Viscoelastic Media; Strick–Mainardi, Jeffreys–Lomnitz–Strick and Andrade Creep Compliances

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Dispersion, attenuation and wavefronts in a class of linear viscoelastic media proposed by Strick and Mainardi (Geophys J R Astr Soc 69:415–429, 1982) and a related class of models due to Lomnitz, Jeffreys and Strick are studied by a new method due to the author. Unlike the previously studied explicit models of relaxation modulus or creep compliance, these two classes support propagation of discontinuities. Due to an extension made by Strick, either of these two classes of models comprise both viscoelastic solids and fluids. We also discuss the Andrade viscoelastic media. The Andrade media do not support discontinuity waves and exhibit the pedestal effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

1
2
3
4

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I. (1970). Mathematical Tables (Dover, New York).

  • Aki, K. and Richards, P.G. (2002). Quantitative Seismology (University Science Books, Sausalito). 2nd edition.

  • Becker, R. (1925). Elastische Nachwirkung und Plastizität. Z. Phys. 33, 185–213.

    Google Scholar 

  • Ben Jazia, A., et al. (2013). Wave propagation in a fractional viscoelastic Andrade medium: diffusive approximation and numerical modeling. arXiv:1312.4820.

  • Biot, M. A. (1956a). Mechanics of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27, 459–467.

    Google Scholar 

  • Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid-saturated porous solid. I- Low frequency range. J. Acoust. Soc. Am. 28, 168–178.

    Google Scholar 

  • Biot, M. A. (1956c). Theory of propagation of elastic waves in a fluid-saturated porous solid. II- Higher frequency range. J. Acoust. Soc. Am. 28, 179–191.

    Google Scholar 

  • Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498.

    Google Scholar 

  • Buchen, P. W. (1974). Application of ray series method to linear viscoelastic wave propagation. PAGEOPH 112, 1011–1030.

  • Carcione, J. M. (2001). Waves in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media (Pergamon Press, Amsterdam).

  • Cottrell, A. H. (1996). Andrade creep. Phil. Mag. Lett. 73, 35–37.

  • da Andrade, E. N. (1910). On the viscous flow of metals and allied phenomena. Proc. Roy. Soc. London A84, 1–12.

  • da Andrade, E. N. (1912). On the validity of the \(t^{1/3}\) law of flow of metals. Phil. Mag. 7, (84).

  • Gribb, T. T. and Cooper, R. F. (1998). Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology. J. Geophys. Res. Solid Earth 103(B11), 27267–27279.

  • Gripenberg, G., et al. (1990). Volterra Integral and Functional Equations (Cambridge University Press, Cambridge).

  • Hanyga, A. (2013). Wave propagation in linear viscoelastic media with completely monotonic relaxation moduli. Wave Motion 50, 909–928. doi:10.1016/j.wavemoti.2013.03.002.

  • Hanyga, A. (2014a). Asymptotic estimates of viscoelastic Green’s functions near the wavefront. arxiv:1401.1046[math-phys]; accepted for publication in Quart. Appl. Math.

  • Hanyga, A. (2014b). Dispersion and attenuation for an acoustic wave equation consistent with viscoelasticity. Accepted for publication in J. Comput. Acoustics.

  • Hanyga, A. and Carcione, J. M. (2000). Numerical solutions of a poro-acoustic wave equation with generalized fractional integral operators. In Bermúdez, A., et al. (eds.), Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation (SIAM-INRIA, Philadelphia), pp. 163–168. Proc. of the SIAM/INRIA conference WAVES2000 in Santiago de Compostela, July 10–14, 2000.

  • Hanyga, A. and Lu, J.-F. (2005). Wave field simulation for heterogeneous transversely isotropic porous media with the JKD dynamic permeability. Comput. Mech. 36, pp. 196–208, doi:10.1007/s00466-004-0652-3.

  • Hanyga, A. and Seredyńska, M. (1999a). Asymptotic ray theory in poro- and viscoelastic media. Wave Motion 30, 175–195.

  • Hanyga, A. and Seredyńska, M. (1999b). Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media, I: Forward modeling. Geophys. J. Int. 137, 319–335.

  • Hanyga, A. and Seredyńska, M. (2002). Asymptotic wavefront expansions in hereditary media with singular memory kernels. Quart. Appl. Math. LX, 213–244.

  • Hanyga, A. and Seredyńska, M. (2007). Relations between relaxation modulus and creep compliance in anisotropic linear viscoelasticity. J. of Elasticity 88, 41–61.

  • Hanyga, A. and Seredyńska, M. (2012). Spatially fractional-order viscoelasticity, non-locality, and a new kind of anisotropy. Journal of Mathematical Physics 53, 052902. doi:10.1063/1.4712300.

  • Jacob, N. (2001). Pseudo-Differential Operators and Markov Processes, vol. I (Imperial College Press, London).

  • Jeffreys, H. (1967). A modification of Lomnitz’ law of creep in rocks. Roy. Astron. Soc. Geophys. J. 14, 1–4.

    Google Scholar 

  • Kelly, J. F., et al. (2008). Analytical time-domain Green’s functions for power-law media. J. Acoust. Soc. Am. 124, 2861–2872.

    Google Scholar 

  • Kjartansson, E. (1979). Constant Q-wave propagation and attenuation. J. Geophys. Res. 84, 4737–4748.

    Google Scholar 

  • Lockner, D. (1993). Room temperature creep in saturated granite. J. Geophys. Res. 98, 475–487.

    Google Scholar 

  • Lomnitz, C. (1957). Linear dissipation in solids. J. Appl. Phys. 28, 201–205.

    Google Scholar 

  • Lomnitz, C. (1962). Application of the logarithmic creep law to stress-wave attenuation in the solid Earth. J. Geophys. Res. 67, 365–368.

    Google Scholar 

  • Lu, J.-F. and Hanyga, A. (2005a). Wave field simulation for heterogeneous porous media with a singular memory drag force. J. Comp. Phys. 208, pp. 651–674, doi:10.1016/j.jcp.2005.03.008.

  • Lu, J.-F. and Hanyga, A. (2005b). Wave field simulation for heterogeneous transversely isotropic porous media with the JKD dynamic permeability. Comp. Mech. 36, pp. 196–208, doi:10.1007/s00466-004-0653-3.

  • Mainardi, F. and Spada, G.(2012). Becker and Lomnitz rheological models: A comparison. In D’Amore, A., et al. (eds.), AIP Conference Proceedings, vol. 1459 (American Institute of Physics), pp. 132–135. Proceedings of the International Conference on Times of Polymers & Composites), Ischia, Italy, 10–14 June 2012.

  • Mainardi, F. and Spada, G. (2012b). On the viscoelastic characterization of the Jeffreys-Lomnitz law of creep. Rheol. Acta 51, 783–791.

  • Miguel, M.-C., et al. (2002). Dislocation jamming and Andrade creep. Phys. Rev. Lett. 89, 165501.

    Google Scholar 

  • Murrell, S. A. F. and Chakravarty, S. (1973). Some new rheological experiments on igneous rocks at temperatures up to 1120 \(^{{\circ}}C\). Geophys. J. R. Astr. Soc. 34, 211–250.

  • Nabarro, F. R. N. (1997). Thermal activation and Andrade creep. Phil. Mag. Lett. 75, 227–233.

    Google Scholar 

  • Näsholm, S. P. and Holm, S. (2011). Linking multiple relaxation, power-law attenuation and and fractional wave equations. J. Acoust. Soc. Am. 130, 3038–3045.

  • Rudin, W. (1976). Principles of Mathematical Analysis (McGraw-Hill, New York). 3rd edition.

  • Schilling, R. L., et al. (2010). Bernstein Functions. Theory and Applications (De Gruyter, Berlin).

  • Strick, E. (1970). A predicted pedestal effect for a pulse propagating in constant Q solids. Geophysics 35, 387–403.

    Google Scholar 

  • Strick, E. (1971). An explanation of observed time discrepancies between continuous and conventional well velocity surveys. Geophysics 36, 285–295.

    Google Scholar 

  • Strick, E. (1982). Application of linear viscoelasticity to seismic wave propagation. In Mainardi, F. (ed.), Wave Propagation in Viscoelastic Media (Pitman, London), pp. 169–193.

  • Strick, E. (1984). Implications of Jeffreys-Lomnitz transient creep. J. Geophys. Res. 89, 437–451.

    Google Scholar 

  • Strick, E. and Mainardi, F. (1982). On a general class of constant \(Q\) solids. Geophys. J. Roy. Astr. Soc. 69, 415–429.

  • Szabo, T. L. (2004). Diagnostic Ultrasound Imaging: Inside Out (Elsevier - Academic Press, Amsterdam).

  • Szabo, T. L. and Wu, J. (2000). A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107, 2437–2446.

Download references

Acknowledgments

The Author is indebted to Francesco Mainardi for precious bibliographic information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Hanyga.

Appendix

Appendix

According to Bernstein’s Theorem, every LICM function \(f(t)\) has an integral representation

$$\begin{aligned} f(t) = \int\limits _{[0,\infty [} {\rm e}^{-r \, t}\, \mu ( {\rm d}r) \end{aligned}$$
(62)

where \(\mu\) is a positive Radon measure satisfying the inequality

$$\begin{aligned} \int\limits _{[0,\infty [} \frac{\mu ({\rm d}r)}{1 + r} < \infty \end{aligned}$$

Bernstein’s Theorem implies that every Bernstein function \(g(t)\) has an integral representation

$$\begin{aligned} g(t) = a + b\, t + \int \limits_{]0,\infty [} ( 1 - {\rm e}^{-r\,t}) \, \nu ( {\rm d}r) \end{aligned}$$
(63)

where \(\nu\) is a positive Radon measure satisfying the inequality

$$\begin{aligned} \int\limits _{]0,\infty [} \frac{r\, \nu ( {\rm d}r)}{1 + r} < \infty \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanyga, A. Attenuation and Shock Waves in Linear Hereditary Viscoelastic Media; Strick–Mainardi, Jeffreys–Lomnitz–Strick and Andrade Creep Compliances. Pure Appl. Geophys. 171, 2097–2109 (2014). https://doi.org/10.1007/s00024-014-0829-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0829-4

Keywords

Navigation