Skip to main content
Log in

Pressure Effects on Plane Wave Reflection and Transmission in Fluid-Saturated Porous Media

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The wave reflection and transmission (R/T) coefficients in fluid-saturated porous media with the effect of effective pressure are rarely studied, despite the ubiquitous presence of in situ pressure in the subsurface Earth. To fill this knowledge gap, we derive exact R/T coefficient equations for a plane wave incident obliquely at the interface between the dissimilar pressured fluid-saturated porous half-spaces described by the theory of poro-acoustoelasticity (PAE). The central result of the classic PAE theory is first reviewed, and then a dual-porosity model is employed to generalize this theory by incorporating the impact of nonlinear crack deformation. The new velocity equations of generalized PAE theory can describe the nonlinear pressure dependence of fast P-, S- and slow P-wave velocities and have a reasonable agreement with the laboratory measurements. The general boundary conditions associated with membrane stiffness are used to yield the exact pressure-dependent wave R/T coefficient equations. We then model the impacts of effective pressure on the angle and frequency dependence of wave R/T coefficients and synthetic seismic responses in detail and compare our equations to the previously reported equations in zero-pressure case. It is inferred that the existing R/T coefficient equations for porous media may be misleading, since they lack consideration for inevitable in situ pressure effects. Modeling results also indicate that effective pressure and membrane stiffness significantly affect the amplitude variation with offset characteristics of reflected seismic signatures, which emphasizes the significance of considering the effects of both in practical applications related to the observed seismic data. By comparing the modeled R/T coefficients to the results computed with laboratory measured velocities, we preliminarily confirm the validity of our equations. Our equations and results are relevant to hydrocarbon exploration, in situ pressure detection and geofluid discrimination in high-pressure fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alkhimenkov Y, Caspari E, Gurevich B, Barbosa ND, Glubokovskikh S, Hunziker J, Quintal B (2020) Frequency-dependent attenuation and dispersion caused by squirt flow: three-dimensional numerical study numerical study of squirt flow. Geophysics 85:M129–M214

    Article  Google Scholar 

  • Ba J, Nie JX, Cao H, Yang HZ (2008) Mesoscopic fluid flow simulation in double-porosity rocks. Geophys Res Lett 35:L04303

    Article  Google Scholar 

  • Ba J, Carcione JM, Cao H, Yao F, Du Q (2013) Poro-acoustoelasticity of fluid-saturated rocks. Geophys Prospect 61:599–612

    Article  Google Scholar 

  • Ba J, Fang ZJ, Fu LY, Xu WH, Zhang L (2023) Acoustic wave propagation in a porous medium saturated with a Kelvin-Voigt non-Newtonian fluid. Geophys J Int 235:ggad355

    Article  Google Scholar 

  • Berjamin H, Pascalis RD (2022) Acoustoelastic analysis of soft viscoelastic solids with application to pre-stressed phononic crystals. Int J Solids Struct 241:111529

    Article  Google Scholar 

  • Berryman JG, Wang HF (2001) Dispersion in poroelastic systems. Phys Rev 64:011303

    CAS  Google Scholar 

  • Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28:179–191

    Article  Google Scholar 

  • Biot MA (1956b) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27:240–253

    Article  Google Scholar 

  • Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498

    Article  Google Scholar 

  • Biot MA (1973) Nonlinear and semilinear rheology of porous solids. J Geophys Res 78:4924–4937

    Article  Google Scholar 

  • Bourbie T, Coussy O, Zinzner B (1987) Acoustics of porous media. Gulf Publishing Company, Houston

    Google Scholar 

  • Bouzidi Y, Schmitt DR (2009) Measurement of the speed and attenuation of the Biot slow wave using a large ultrasonic transmitter. J Geophys Res 114:B08201

    Article  Google Scholar 

  • Carcione JM (2015) Wave fields in real media: wave propagation in anisotropic, anelastic, porous and electromagnetic media. In: Handbook of geophysical exploration, 3rd edn. Elsevier Ltd, Amsterdam

  • Carcione JM, Picotti S (2006) P-wave seismic attenuation by slow wave diffusion: effects of inhomogeneous properties. Geophysics 71:O1–O8

    Article  Google Scholar 

  • Carcione JM, Quiroga-Goode G (1995) Some aspects of the physics and numerical modeling of Biot compressional waves. J Comput Acoust 3:261–280

    Article  Google Scholar 

  • Carcione JM, Campanella O, Santos JE (2007) A poroelastic model for wave propagation in partially frozen orange juice. J Food Eng 80:11–17

    Article  Google Scholar 

  • Carcione JM, Gei D, Gurevich B, Ba J (2021) On the normal-incidence refection coefficient in porous media. Surv Geophys 42:923–942

    Article  Google Scholar 

  • Chatterjee M, Dhua S, Chattopadhyay A, Sahu SA (2016) Reflection and refraction for three-dimensional plane waves at the interface between distinct anisotropic half-spaces under initial stresses. Int J Geomech 16:0401509

    Article  Google Scholar 

  • Chattopadhyay A, Bose S, Chakraborty M (1982) Reflection of elastic waves under initial stress at a free surface: P and SV motion. J Acoust Soc Am 72:255–263

    Article  Google Scholar 

  • Chen FB, Zong ZY, Jiang M (2021) Seismic reflectivity and transmissivity parameterization with the effect of normal in-situ stress. Geophys J Int 229:311–327

    Article  Google Scholar 

  • Chen FB, Zong ZY (2022) PP wave reflection coefficient in stress-induced anisotropic media and amplitude variation with incident angle and azimuth inversion. Geophysics 87:C155–C172

    Article  Google Scholar 

  • Chen FB, Zong ZY, Yin XY (2022a) Monitoring the change in horizontal stress with multi-wave time-lapse seismic response based on nonlinear elasticity theory. Petrol Sci PETSCI354

  • Chen FB, Zong ZY, Yin XY (2022b) Acoustothermoelasticity for joint effects of stress and thermal fields on wave dispersion and attenuation. J Geophys Res-Sol Ea 127:e2021JB023671

    Article  Google Scholar 

  • Chen FB, Zong ZY, Yin XY, Feng YW (2022c) Accurate formulae for P-wave reflectivity and transmissivity for a non-welded contact interface with the effect of in situ vertical stress. Geophys J Int 229:311–327

    Article  Google Scholar 

  • Chen FB, Zong ZY, Yin XY, Yang ZF, Yan XF (2023a) Pressure and frequency dependence of elastic moduli of fluid-saturated dual-porosity rocks. Geophys Prospect 71:1599–1615. https://doi.org/10.1111/1365-2478.13395

    Article  Google Scholar 

  • Chen FB, Zong ZY, Stovas A, Yin XY (2023b) Wave reflection and transmission coefficients for layered transversely isotropic media with vertical symmetry axis under initial stress. Geophys J Int 233:1580–1595

    Article  Google Scholar 

  • Cheng AHD (2016) Porochemoelasticity. In: Theory and applications of transport in porous media, vol 27. Springer, Switzerland

  • David EC, Zimmerman RW (2012) Pore structure model for elastic wave velocities in fluid-saturated sandstones. J Geophys Res 117:B07210

    Article  Google Scholar 

  • Degtyar AD, Rokhlin SI (1998) Stress effect on boundary conditions and elastic wave propagation through an interface between anisotropic media. J Acoust Soc Am 104:1992–2003

    Article  Google Scholar 

  • Deresiewicz H, Skalak R (1963) On uniqueness in dynamic poroelasticity. Bull Seism Soc Am 53:783–788

    Article  Google Scholar 

  • Dey S, Addy SK (1977) Reflection of plane waves under initial stresses at a free surface. Int J Nonlin Mech 12:371–381

    Article  Google Scholar 

  • Dutta NC, Odé H (1979a) Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model)-Part I: biot theory. Geophysics 44:1777–1788

    Article  Google Scholar 

  • Dutta NC, Odé H (1979b) Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (white model)-part II: results. Geophysics 44:1789–1805

    Article  Google Scholar 

  • Dutta NC, Odé H (1983) Seismic reflections from a gas-water contact. Geophysics 48:148–162

    Article  Google Scholar 

  • Fu BY, Fu LY (2018) Poro-acoustoelasticity with compliant pores for fluid-saturated rocks. Geophysics 83:WC1–WC14

    Article  Google Scholar 

  • Geertsma J, Smit D (1961) Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophysics 26:169–181

    Article  Google Scholar 

  • Goldberg ZA (1961) Interaction of plane longitudinal and transverse elastic waves. Soviet Phys Acoust 6:306–310

    Google Scholar 

  • Grinfeld MA, Norris AN (1996) Acoustoelasticity theory and applications for fluid-saturated porous media. J Acoust Soc Am 100:1368–1374

    Article  Google Scholar 

  • Guo JX, Gurevich B (2020a) Effects of coupling between wave-induced fluid flow and elastic scattering on P-wave dispersion and attenuation in rocks with aligned fractures. J Geophys Res-Sol Ea 125:e2019JB018685

    Article  Google Scholar 

  • Guo JX, Gurevich B (2020b) Frequency-dependent P wave anisotropy due to wave-induced fluid flow and elastic scattering in a fluid-saturated porous medium with aligned fractures. J Geophys Res-Sol Ea 125:e2020JB020320

    Article  Google Scholar 

  • Guo JX, Chen XF (2022) Pressure dependence of elastic wave velocities of unconsolidated cemented sands. Geophysics 87:MR161–MR175

    Article  Google Scholar 

  • Gurevich B (1996) On: “Wave propagation in heterogeneous, porous media: A velocity stress, finite difference method”, by N. Dai, A. Vafidis, and E. R. Kanasewich (March-April 1995 Geophysics, p. 327–340). Geophysics 61:1230–1231

    Article  Google Scholar 

  • Gurevich B, Ciz R, Denneman AI (2004) Simple expressions for normal-incidence reflection coefficients from an interface between fluid-saturated porous materials. Geophysics 69:1372–1377

    Article  Google Scholar 

  • Gurevich B, Makarynska D, de Paula OB, Pervukhina M (2010) A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics 75:N109–N120

    Article  Google Scholar 

  • Gurevich B, Schoenberg M (1999) Interface conditions for Biot’s equations of poroelasticity. J Acoust Soc Am 105:2585–2589

    Article  Google Scholar 

  • Hearmon RFS (1953) Third-order elastic coefficients. Acta Cryst 6:331–340

    Article  CAS  Google Scholar 

  • Hughes DS, Kelly JL (1953) Second-order elastic deformation of solids. Phys Rev 92:1145–1149

    Article  Google Scholar 

  • Jiao JJ, Cheng JL, Liu YB, Yang HY, Tan DR, Cheng P, Zhang YQ, Jiang CL, Chen Z (2023) Inversion of TEM measurement data via a quantum particle swarm optimization algorithm with the elite opposition-based learning strategy. Comput Geosci 174:105334

    Article  Google Scholar 

  • Johnson DL (1982) Elastodynamic of gels. J Chem Phys 77:1531–1539

    Article  CAS  Google Scholar 

  • Jones GL, Kobett D (1963) Interaction of elastic waves in an isotropic solid. J Acoust Soc Am 35:5–10

    Article  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain problems in least squares. Q Appl Math 2:164–168

    Article  Google Scholar 

  • Marquardt D (1963) An algorithm for least square estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  Google Scholar 

  • Masumi H, Matsumura J, Ryoichi K, Syunji T, Yasutoshi S, Kazuyuki O (2010) Acoustoelastic effect in Melia azedarach for nondestructive stress measurement. Constr Build Mater 24:1712–1717

    Google Scholar 

  • Müller TM, Gurevich B, Lebedev M (2010) Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—a review. Geophysics 75:75A147-75A164

    Article  Google Scholar 

  • Murnaghan FD (1937) Finite deformations of an elastic solid. Am J Math 59:235–260

    Article  Google Scholar 

  • Murnaghan FD (1951) Finite deformation of an elastic solid. Wiley, New York

    Google Scholar 

  • Nagy PB, Blaho G (1994) Experimental measurements of surface stiffness on water-saturated porous solids. J Acoust Soc Am 95:828–835

    Article  Google Scholar 

  • Norris AN, Sinha BK, Kostek S (1994) Acoustoelasticity of solid/fluid composite systems. Geophys J Int 118:439–446

    Article  Google Scholar 

  • Li WQ, Hu HS (2023) Reflection and transmission of plane waves in stressed media with an imperfectly bonded interface. Geophys J Int 233:2232–2252

    Article  Google Scholar 

  • Ling WC, Ba J, Carcione JM, Zhang L (2021) Poroacoustoelasticity for rocks with a dual-pore structure. Geophysics 86:MR17–MR25

    Article  Google Scholar 

  • Liu JX, Cui ZW, Wang KX (2007) Reflection and transmission of acoustic waves at the interface between rocks in the presence of elastic–plastic deformations. J Geophys Eng 4:232–241

    Article  Google Scholar 

  • Liu JX, Cui ZW, Wang KX (2009) The relationships between uniaxial stress and reflection coefficients. Geophys J Int 179:1584–1592

    Article  Google Scholar 

  • Liu JX, Cui ZW, Sevostianov I (2021) Effect of stresses on wave propagation in fluid-saturated porous media. Int J Eng Sci 167:103519

    Article  Google Scholar 

  • Pao YH, Sachse W, Fukuoka H (1984) Acoustoelasticity and ultrasonic measurement of residual stress. Physical acoustics. Academic Press Inc, London

    Google Scholar 

  • Pan XP, Zhao ZZ, Zhang DZ (2023) Characteristics of azimuthal seismic reflection response in horizontal transversely isotropic media under horizontal in situ stress. Surv Geophys 44:387–423

    Article  Google Scholar 

  • Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res 109:B01201

    Article  Google Scholar 

  • Qi QM, Cao JX, Wang XJ, Gao JJ (2021) Influence of interface condition on reflection of elastic waves in fluid-saturated porous media. Geophysics 86:MR223–MR233

    Article  Google Scholar 

  • Rasolofosaon P (1998) Stress-induced seismic anisotropic revisited. Revue De L’institut Francais Du Petrole 53:679–692

    Article  Google Scholar 

  • Santos JE, Corbero JM, Ravazzoli CL, Hensley JL (1992) Reflection and transmission coefficients in fluid-saturated porous media. J Acoust Soc Am 91:1911–1923

    Article  Google Scholar 

  • Sarkar D, Bakulin A, Kranz RL (2003) Anisotropic inversion of seismic data for stressed media: theory and a physical modeling study on Berea Sandstone. Geophysics 68:1–15

    Article  Google Scholar 

  • Schmitt DR, Currie CA, Zhang L (2012) Crustal stress determination from boreholes and rock cores: fundamental principles. Tectonophysics 580:1–26

    Article  Google Scholar 

  • Shapiro SA (2003) Elastic piezosensitivity of porous and fractured rocks. Geophysics 68:482–486

    Article  Google Scholar 

  • Sharma MD (2007) Effect of initial stress on reflection at the free surface of anisotropic elastic medium. J Earth Syst Sci 116:537–551

    Article  Google Scholar 

  • Shaw RK, Sen MK (2004) Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophys J Int 158:225–238

    Article  Google Scholar 

  • Silin DB, Goloshubin GM (2010) An asymptotic model of seismic refection from a permeable layer. Transp Porous Media 83:233–256

    Article  CAS  Google Scholar 

  • Silin DB, Korneev VA, Goloshubin GM, Patzek TW (2006) Low-frequency asymptotic analysis of seismic refection from a fuid-saturated medium. Transp Porous Media 62:283–305

    Article  Google Scholar 

  • Sripanich Y, Vasconcelos I, Tromp J, Trampert J (2021) Stress-dependent elasticity and wave propagation-NEW insights and connections. Geophysics 86:W47–W64

    Article  Google Scholar 

  • Sun YY, Gurevich B (2020) Modeling the effect of pressure on the moduli dispersion in fluid-saturated rocks. J Geophys Res-Sol Ea 125:e1019JB019297

    Google Scholar 

  • Thurston RN, Brugger K (1964) Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys Rev 133:A1604–A1610

    Article  Google Scholar 

  • Toupin PA, Bernstein B (1961) Sound waves in deformed perfectly elastic materials. Acoustoelast Effect J Acoust Soc Am 33:216–225

    Article  Google Scholar 

  • Tromp J, Marcondes M, Wentzcovitch R (2019) Effects of induced stress on seismic waves: VALIDATION based on ab initio calculations. J Geophys Res-Sol Ea 124:729–741

    Article  Google Scholar 

  • Wang EJ, Carcione JM, Ba J, Liu Y (2020) Refection and transmission of plane elastic waves at an interface between two double-porosity media: effect of local fluid flow. Surv Geophys 41:283–322

    Article  Google Scholar 

  • Wei Y, Ba J, Carcione JM (2022) Stress effects on wave velocities of rocks: Contribution of crack closure, squirt flow and acoustoelasticity. J Geophys Res-Sol Ea 127:e202228025253

    Google Scholar 

  • Winkler KW, McGowan L (2004) Nonlinear acoustoelastic constants of dry and saturated rocks. J Geophys Res-Sol Ea 109:B10204

    Article  Google Scholar 

  • Yang HD, Fu LY, Fu BY, Du QZ (2022) Poro-acoustoelasticity finite-difference simulation of elastic wave propagation in prestressed porous media. Geophysics 87:T329–T345

    Article  Google Scholar 

  • Zong ZY, Yin XY, Wu GC (2015) Geofluid discrimination incorporating poroelasticity and seismic reflection inversion. Surv Geophys 36:659–681

    Article  Google Scholar 

  • Zong ZY, Chen FB, Yin XY, Li K (2023) Effect of stress on wave propagation in fluid-saturated porous thermoelastic media. Surv Geophys 44:425–462

    Article  Google Scholar 

  • Zuo P, Liu Y, Fan Z (2021) Modeling of acoustoelastic borehole waves subjected to tectonic stress with formation anisotropy and borehole deviation. Geophysics 87:D1–D19

    Article  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to the Editor in Chief, Michael J. Rycroft, reviewer Junxin Guo and two other anonymous reviewers for their invaluable suggestions, which significantly enriched this work. The authors thank Boris Gurevich for valuable discussions; and the sponsorships of National Natural Science Foundation of China (42174139, 41974119, 42030103), Shandong Province Foundation for Laoshan National Laboratory of Science and Technology Foundation (LSKJ202203400), Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China (2019RA2136), China Scholarship Council (202206450050), and Innovation Fund Project for Graduate Students of China University of Petroleum (East China) (23CX04003A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyun Zong.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest concerning the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Constitutive Relationship in Fluid-Saturated Porous Media Considering the Effect of Effective Pressure

In the context of acoustoelasticity theory, when the wave propagates through a rock subjected to the in situ effective pressure, the particles of this rock will undergo three different states in the entire dynamic process (Pao et al. 1984; Chen et al. 2021). The first state is usually called as “natural state” that means a particle is in the rock free of pressure and no wave disturbs. Then the in situ pressure is applied to the rock and the rock particle enters the second state termed as “initial state”. Finally, the rock particle goes to the third state, “final state,” when a wave propagates through the stressed rock. The sketch of a rock particle in three states is shown in Fig. 

Fig. 21
figure 21

Sketch of a rock particle in natural, initial and final states

21. The physical quantities in the natural, initial and final states are symbolized by the superscripts 0, \(s\) and \(f\), respectively.

The primary focus of the early studies associated to acoustoelasticity theory is the analysis on the wave propagation in nonporous isotropic materials, for instance, metals and polymers, under the influence of initial pressure (Hughes and Kelly 1953; Thurston and Brugger 1964; Pao et al. 1984; Degtyar and Rokhlin 1998). Winkler and McGowan (2004) used this theory to estimate the 3oECs of a fluid-saturated porous rock with the laboratory measured wave velocities against pressure. There is a substantial bias between their estimated result and the real values. They attributed this bias to the disregard of wave velocity dispersion induced by wave-induced fluid flow in pores. Then several academics (e.g., Grinfeld and Norris 1996; Ba et al. 2013; Liu et al. 2021; Zong et al. 2023) successively advance and refine this theory by allowing the addition of pores and internal fluid flow.

The Helmholtz free energy of a fluid-saturated porous medium is given by (Grinfeld and Norris 1996; Liu et al. 2021)

$$\begin{aligned} H & = \frac{1}{2}\lambda_{u} E^{2} + \mu_{m} E_{ij}^{2} - \alpha ME\zeta + \frac{1}{2}M\zeta^{2} + \frac{1}{6}\nu^{\prime}_{1} E^{3} \\ & \quad + \nu^{\prime}_{2} E_{ij}^{2} E + \frac{4}{3}\nu^{\prime}_{3} E_{ik} E_{il} E_{kl} + \gamma_{1} \zeta^{3} + \gamma_{2} E^{2} \zeta + \gamma_{3} E\zeta^{2} + \frac{1}{2}\gamma \left( {E^{2} - E_{ij}^{2} } \right)\zeta , \\ \end{aligned}$$
(70)

where \(E_{ij} = {{\left( {u_{i,j} + u_{j,i} { + }u_{k,i} u_{k,j} } \right)} \mathord{\left/ {\vphantom {{\left( {u_{i,j} + u_{j,i} { + }u_{k,i} u_{k,j} } \right)} 2}} \right. \kern-0pt} 2}\) is the Lagrangian strain and \(E = E_{ij} \delta_{ij}\).

The stress tensor of the medium in any state can be computed with

$$T_{ij} = \frac{\partial H}{{\partial E_{ij} }},$$
(71)

and thus the stress tensors in the initial and final states can be derived from Eqs. (70) and (71), given by

$$\begin{aligned} T_{ij}^{s} & = \lambda_{u} E^{s} \delta_{ij} + 2\mu_{m} E_{ij}^{s} - \alpha M\zeta^{s} \delta_{ij} + \frac{1}{2}\nu^{\prime}_{1} \left( {E^{s} } \right)^{2} \delta_{ij} + 3\nu^{\prime}_{2} \left( {E_{ij}^{s} } \right)^{2} \delta_{ij} + 4\nu^{\prime}_{3} E_{ik}^{s} E_{jk}^{s} \\ & \quad + 2\gamma_{2} E^{s} \zeta^{s} \delta_{ij} + \gamma_{3} \left( {\zeta^{s} } \right)^{2} \delta_{ij} + \gamma \left( {E^{s} \delta_{ij} - E_{ij}^{s} } \right)\zeta^{s} , \\ \end{aligned}$$
(72)

and

$$\begin{aligned} T_{ij}^{f} & = \lambda_{u} E^{f} \delta_{ij} + 2\mu_{m} E_{ij}^{f} - \alpha M\zeta^{f} \delta_{ij} + \frac{1}{2}\nu^{\prime}_{1} \left( {E^{f} } \right)^{2} \delta_{ij} + 3\nu^{\prime}_{2} \left( {E_{ij}^{f} } \right)^{2} \delta_{ij} + 4\nu^{\prime}_{3} E_{ik}^{f} E_{jk}^{f} \\ & \quad + 2\gamma_{2} E^{f} \zeta^{f} \delta_{ij} + \gamma_{3} \left( {\zeta^{f} } \right)^{2} \delta_{ij} + \gamma \left( {E^{f} \delta_{ij} - E_{ij}^{f} } \right)\zeta^{f} , \\ \end{aligned}$$
(73)

Subtracting Eqs. (72) from (73), we obtain the stress increment induced by wave perturbation, as

$$\begin{aligned} T_{ij} & = \left( {\lambda_{u} + 2\gamma_{2} \zeta^{s} + \gamma \zeta^{s} } \right)\delta_{ij} E + \left( {2\mu_{m} - \gamma \zeta^{s} } \right)E_{ij} + \nu^{\prime}_{1} \delta_{ij} e^{s} e \\ & \quad + \left( {6\nu^{\prime}_{2} e^{s} + 8\nu^{\prime}_{3} \delta_{ik} e_{ik}^{s} } \right)e_{ij} + \left( {2\gamma_{2} \delta_{ij} E^{s} + 2\gamma_{3} \delta_{ij} \zeta^{s} + \gamma \delta_{ij} E^{s} - \gamma E_{ij}^{s} - \alpha M\delta_{ij} } \right)\zeta \\ \end{aligned}$$
(74)

Then we express Eq. (74) in terms of the displacement gradient, yields

$$T_{ij} = \Gamma_{ij} \frac{{\partial u_{i} }}{{\partial x_{i} }} + \Lambda \left( {\frac{{\partial u_{i} }}{{\partial x_{j} }} + \frac{{\partial u_{j} }}{{\partial x_{i} }}} \right) + \Upsilon_{ij} \frac{{\partial U_{i} }}{{\partial x_{i} }},$$
(75)

where

$$\left\{ \begin{gathered} \Gamma_{ij} = \left( {1 + e^{s} } \right)\left( {\lambda_{u} + 2\gamma_{2} \zeta^{s} + \gamma \zeta^{s} } \right)\delta_{ij} + \nu^{\prime}_{1} e^{s} \delta_{ij} , \hfill \\ \Lambda = \mu_{m} - {{\left[ {\gamma \zeta^{s} - \left( {2\mu_{m} - \gamma \zeta^{s} + 6\nu^{\prime}_{2} + 8\nu^{\prime}_{3} } \right)} \right]e^{s} } \mathord{\left/ {\vphantom {{\left[ {\gamma \zeta^{s} - \left( {2\mu_{m} - \gamma \zeta^{s} + 6\nu^{\prime}_{2} + 8\nu^{\prime}_{3} } \right)} \right]e^{s} } 2}} \right. \kern-0pt} 2}, \hfill \\ \Upsilon_{ij} = \left( {2\gamma_{2} + \gamma } \right)\delta_{ij} e^{s} - \gamma e_{ij}^{s} + 2\gamma_{3} \zeta^{s} \delta_{ij} - \alpha M\delta_{ij} . \hfill \\ \end{gathered} \right.$$
(76)

A similar operation is next used to derive the fluid pressure increment in a fluid-porous medium. The fluid pressure of the medium in any state can be computed using

$$p_{f} = \frac{\partial H}{{\partial \zeta }}.$$
(77)

According to Eqs. (70) and (77), the fluid pressure in the initial and final states can be expressed as

$$p_{f}^{s} = - \alpha ME^{s} + M\zeta^{s} + 3\gamma_{1} \left( {\zeta^{s} } \right)^{2} + 2\gamma_{3} E^{s} \zeta^{s} + \left( {\gamma_{2} + \frac{1}{2}\gamma } \right)\left( {E^{s} } \right)^{2} - \frac{1}{2}\gamma \left( {E_{ij}^{s} } \right)^{2} ,$$
(78)

and

$$p_{f}^{f} = - \alpha ME^{f} + M\zeta^{f} + 3\gamma_{1} \left( {\zeta^{f} } \right)^{2} + 2\gamma_{3} E^{f} \zeta^{f} + \left( {\gamma_{2} + \frac{1}{2}\gamma } \right)\left( {E^{f} } \right)^{2} - \frac{1}{2}\gamma \left( {E_{ij}^{f} } \right)^{2} .$$
(79)

Then the fluid pressure increment (induced by the propagating wave) from the initial state to final state is

$$p_{f} = p_{f}^{f} - p_{f}^{s} = - \alpha ME + M\zeta + 6\gamma_{1} \zeta^{s} \zeta + 2\gamma_{3} \left( {E^{s} \zeta + \zeta^{s} E} \right) + \left( {2\gamma_{2} + \gamma } \right)e^{s} e - \gamma e_{ij}^{s} e_{ij} .$$
(80)

Rewriting fluid pressure increment with the wave displacement gradients yields

$$p_{f} = \tilde{\Gamma }\frac{{\partial u_{i} }}{{\partial x_{i} }} + \tilde{\Lambda }_{ij} \frac{{\partial u_{i} }}{{\partial x_{j} }} + \tilde{\Upsilon }\frac{{\partial U_{i} }}{{\partial x_{i} }},$$
(81)

where

$$\left\{ \begin{gathered} \tilde{\Gamma } = - \alpha M + 2\gamma_{3} \zeta^{s} + \left( {2\gamma_{2} + \gamma } \right)e^{s} , \hfill \\ \tilde{\Lambda }_{ij} = - \gamma e_{ij}^{s} , \hfill \\ \tilde{\Upsilon } = M + 6\gamma_{1} \zeta^{s} + 2\gamma_{3} e^{s} . \hfill \\ \end{gathered} \right.$$
(82)

From Eqs. (75), (76), (81) and (82), we can see that if the media are free of pressure, the initial static strains of solid skeleton and fluid flow will vanish and, in this case, the constitutive equations shown in Eqs. (85) and (81) will degrade to the Biot’s ones (Biot 1956a, b).

Appendix B: Coefficients of Dynamic Equations

Under the “Small-on-Large” assumption, the high-order small terms of strains can be omitted when deriving the dynamic equations in the fluid-saturated porous media under the effect of initial pressure. In this case, Liu et al. (2021) derived the expressions for the four coefficients of dynamic Eqs. (19) and (20), given by

$$\Upsilon_{ij} = \alpha M\left( {\delta_{ij} + u_{i,j}^{s} } \right) + {{\gamma \left( {u_{i,j}^{s} + u_{j,i}^{s} } \right)} \mathord{\left/ {\vphantom {{\gamma \left( {u_{i,j}^{s} + u_{j,i}^{s} } \right)} 2}} \right. \kern-0pt} 2} - \left( {2\gamma_{2} + \gamma } \right)\delta_{ij} u_{i,i}^{s} + \left( {\alpha M + 2\gamma_{3} } \right)\delta_{ij} U_{i,i}^{s} ,$$
(83)
$$\Upsilon_{kj} = \alpha M\left( {\delta_{kj} + u_{k,j}^{s} } \right) + {{\gamma \left( {u_{k,j}^{s} + u_{j,k}^{s} } \right)} \mathord{\left/ {\vphantom {{\gamma \left( {u_{k,j}^{s} + u_{j,k}^{s} } \right)} 2}} \right. \kern-0pt} 2} - \left( {2\gamma_{2} + \gamma } \right)\delta_{kj} u_{i,i}^{s} + \left( {\alpha M + 2\gamma_{3} } \right)\delta_{kj} U_{i,i}^{s} ,$$
(84)
$$\Upsilon = M + \left( {2\gamma_{3} + \alpha M} \right)e^{s} - 3\left( {M - 2\gamma_{1} } \right)\zeta^{s} ,$$
(85)
$$\Xi_{ijkl} = \left( {c_{ijkl} + \alpha^{2} M\delta_{ij} \delta_{kl} } \right) + a_{ijklmn} u_{m,n}^{s} + a_{ijkl} U_{i,i}^{s} ,$$
(86)

where

$$c_{ijkl} = \lambda_{b} \delta_{ij} \delta_{kl} + \mu_{b} \delta_{ik} \delta_{jl} + \mu_{b} \delta_{jk} \delta_{il} ,$$
(87)
$$\begin{aligned} a_{ijklmn} & = d_{ijklmn} + \lambda_{u} \left( {\delta_{ij} \delta_{nl} \delta_{mk} + \delta_{ik} \delta_{jl} \delta_{mn} + \delta_{im} \delta_{jn} \delta_{kl} } \right) \\ & \quad + \mu_{m} \left( {\delta_{jl} \delta_{in} \delta_{mk} + \delta_{il} \delta_{jn} \delta_{mk} + \delta_{ik} \delta_{ml} \delta_{jn} + \delta_{im} \delta_{jl} \delta_{kn} + \delta_{ik} \delta_{nl} \delta_{jm} + \delta_{im} \delta_{jk} \delta_{nl} } \right), \\ \end{aligned}$$
(88)
$$a_{ijkl} = \left[ {\left( {\alpha M + {\gamma \mathord{\left/ {\vphantom {\gamma 2}} \right. \kern-0pt} 2}} \right)\delta_{ik} \delta_{jl} - 2\left( {\gamma_{2} + {\gamma \mathord{\left/ {\vphantom {\gamma 2}} \right. \kern-0pt} 2}} \right)\delta_{ij} \delta_{kl} + {{\gamma \delta_{jk} \delta_{il} } \mathord{\left/ {\vphantom {{\gamma \delta_{jk} \delta_{il} } 2}} \right. \kern-0pt} 2}} \right],$$
(89)
$$\begin{aligned} d_{ijklmn} & = \nu^{\prime}_{1} \delta_{ij} \delta_{kl} \delta_{mn} + 2\nu^{\prime}_{2} \left( {\delta_{ij} Y_{klmn} + \delta_{kl} Y_{mnij} + \delta_{mn} Y_{ijkl} } \right) \\ & \quad + 2\nu^{\prime}_{3} \left( {\delta_{ik} Y_{jlmn} + \delta_{il} Y_{jkmn} + \delta_{jk} Y_{ilmn} + \delta_{jl} Y_{ikmn} } \right), \\ \end{aligned}$$
(90)
$$Y_{ijkl} = {{\left( {\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} } \right)} \mathord{\left/ {\vphantom {{\left( {\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} } \right)} 2}} \right. \kern-0pt} 2}.$$
(91)

Combining Eqs. (83)–(90) and dynamic Eqs. (19) and (20), one can conduct the wave simulation in high-pressure field. In fact, by utilizing Eqs. (83)–(90), we can easily analyze not only the wave propagation in the media under confining pressure and pore pressure (i.e., effective pressure) but also wave propagation in cases with axial stress (such as uniaxial, biaxial and triaxial, see the Appendix in Liu et al. 2021). According to the generalized Hooke’s law, the static strains of a pressured (stressed) rock change as the pressure (stress) state changes.

Appendix C: Explicit Expressions for the Wave R/T Coefficients

The linear relationship among the amplitudes of solid displacement potentials of seven waves is derived as

$$\sum\limits_{j = 1}^{6} {G_{ij} d_{j} } = b_{i} ,$$
(92)

where

$$G_{11} = f_{I} ,G_{12} = f_{I} ,G_{13} = - g_{1S} ,G_{14} = - f_{I} ,G_{15} = - f_{I} ,G_{16} = g_{2S} ,$$
(93)
$$G_{21} = g_{1P} ,G_{22} = g_{1SP} ,G_{23} = f_{I} ,G_{24} = - g_{2P} ,G_{25} = - g_{2SP} ,G_{26} = - f_{I} ,$$
(94)
$$G_{31} = 0,G_{32} = \lambda^{\left( 1 \right)} g_{1SP} ,G_{33} = 0,G_{34} = 0,G_{35} = - \lambda^{\left( 2 \right)} g_{2SP} ,G_{36} = 0,$$
(95)
$$G_{41} = \left( {H_{1}^{\left( 1 \right)} + H_{2}^{\left( 1 \right)} } \right)k_{1P}^{2} - H_{2}^{\left( 1 \right)} f_{I}^{2} ,G_{42} = \left( {H_{1}^{\left( 1 \right)} + H_{2}^{\left( 1 \right)} + \lambda^{\left( 1 \right)} H_{3}^{\left( 1 \right)} } \right)k_{1SP}^{2} - H_{2}^{\left( 1 \right)} f_{I}^{2} ,$$
(96)
$$G_{43} = H_{2}^{\left( 1 \right)} f_{I} g_{1S} ,G_{44} = - \left( {H_{1}^{\left( 2 \right)} + H_{2}^{\left( 2 \right)} } \right)k_{2P}^{2} + H_{2}^{\left( 2 \right)} f_{I}^{2} ,$$
(97)
$$G_{45} = - \left( {H_{1}^{\left( 2 \right)} + H_{2}^{\left( 2 \right)} + \lambda^{s\left( 2 \right)} H_{3}^{\left( 2 \right)} } \right)k_{2SP}^{2} + H_{2}^{\left( 2 \right)} f_{I}^{2} ,G_{46} = - H_{2}^{\left( 2 \right)} f_{I} g_{2S} ,$$
(98)
$$G_{51} = H_{2}^{\left( 1 \right)} f_{I} g_{1P} ,G_{52} = \left( {H_{2}^{\left( 1 \right)} + \lambda^{s\left( 1 \right)} H_{4}^{\left( 1 \right)} } \right)f_{I} g_{1SP} ,G_{53} = \frac{1}{2}H_{2}^{\left( 1 \right)} \left( {2f_{I}^{2} - k_{1S}^{2} } \right),$$
(99)
$$G_{54} = - H_{2}^{\left( 2 \right)} f_{I} g_{2P} ,G_{55} = - \left( {H_{2}^{\left( 2 \right)} + \lambda^{s\left( 2 \right)} H_{4}^{\left( 2 \right)} } \right)f_{I} g_{2SP} ,G_{56} = - \frac{1}{2}H_{2}^{\left( 2 \right)} \left( {2f_{I}^{2} - k_{2S}^{2} } \right),$$
(100)
$$G_{61} = \tilde{\Gamma }^{\left( 1 \right)} k_{1P}^{2} - \gamma^{\left( 1 \right)} e_{11}^{s\left( 1 \right)} f_{I}^{2} - 2\gamma^{\left( 1 \right)} e_{13}^{s\left( 1 \right)} f_{I} g_{1P} - \gamma^{\left( 1 \right)} e_{33}^{s\left( 1 \right)} g_{1P}^{2} ,$$
(101)
$$G_{62} = \left( {\tilde{\Gamma }^{\left( 1 \right)} + \lambda^{s\left( 1 \right)} \tilde{\Upsilon }^{\left( 1 \right)} } \right)k_{1SP}^{2} - \gamma^{\left( 1 \right)} e_{11}^{s\left( 1 \right)} f_{I}^{2} - 2\gamma^{\left( 1 \right)} e_{13}^{s\left( 1 \right)} f_{I} g_{1SP} - \gamma^{\left( 1 \right)} e_{33}^{s\left( 1 \right)} g_{1SP}^{2} ,$$
(102)
$$G_{63} = \gamma^{\left( 1 \right)} e_{11}^{s\left( 1 \right)} f_{I} g_{1S} - \gamma^{\left( 1 \right)} e_{13}^{s\left( 1 \right)} \left( {f_{I}^{2} - g_{1S}^{2} } \right) - \gamma^{\left( 1 \right)} e_{33}^{s\left( 1 \right)} f_{I} g_{1S} ,$$
(103)
$$G_{64} = - \tilde{\Gamma }^{\left( 2 \right)} k_{2P}^{2} + \gamma^{\left( 2 \right)} e_{11}^{s\left( 2 \right)} f_{I}^{2} + 2\gamma^{\left( 2 \right)} e_{13}^{s\left( 2 \right)} f_{I} g_{2P} + \gamma^{\left( 2 \right)} e_{33}^{s\left( 2 \right)} g_{2P}^{2} ,$$
(104)
$$G_{65} = - \left( {\tilde{\Gamma }^{\left( 2 \right)} + \lambda^{s\left( 2 \right)} \tilde{\Upsilon }^{\left( 2 \right)} } \right)k_{2SP}^{2} + \gamma^{\left( 2 \right)} e_{11}^{s\left( 2 \right)} f_{I}^{2} + 2\gamma^{\left( 2 \right)} e_{13}^{s\left( 2 \right)} f_{I} g_{2SP} + \gamma^{\left( 2 \right)} e_{33}^{s\left( 2 \right)} g_{2SP}^{2} + \lambda^{\left( 2 \right)} Wg_{2SP} ,$$
(105)
$$G_{66} = - \gamma^{\left( 2 \right)} e_{11}^{s\left( 2 \right)} f_{I} g_{2S} + \gamma^{\left( 2 \right)} e_{13}^{s\left( 2 \right)} \left( {f_{I}^{2} - g_{2S}^{2} } \right) + \gamma^{\left( 2 \right)} e_{33}^{s\left( 2 \right)} f_{I} g_{2S} ,$$
(106)

and

$$b_{1} = - \vartheta f_{I} { + }\left( {1 - \vartheta } \right)g_{I} ,b_{2} = - \vartheta g_{I} - \left( {1 - \vartheta } \right)f_{I} ,b_{3} = 0,$$
(107)
$$b_{4} = - \vartheta \left[ {H_{1}^{\left( 1 \right)} k_{I}^{2} + H_{2}^{\left( 1 \right)} g_{I}^{2} } \right] - \left( {1 - \vartheta } \right)H_{2}^{\left( 1 \right)} f_{I} g_{I} ,$$
(108)
$$b_{5} = - \vartheta H_{2}^{\left( 1 \right)} f_{I} g_{I} + \frac{1}{2}\left( {1 - \vartheta } \right)H_{2}^{\left( 1 \right)} \left( {g_{I}^{2} - f_{I}^{2} } \right),$$
(109)
$$b_{6} = - \vartheta \left( {\tilde{\Gamma }^{\left( 1 \right)} k_{I}^{2} - \gamma^{\left( 1 \right)} e_{11}^{s\left( 1 \right)} f_{I}^{2} - \gamma^{\left( 1 \right)} e_{33}^{s\left( 1 \right)} g_{I}^{2} } \right) + \left( {1 - \vartheta } \right)\left( {\gamma^{\left( 1 \right)} e_{33}^{s\left( 1 \right)} - \gamma^{\left( 1 \right)} e_{11}^{s\left( 1 \right)} } \right)f_{I} g_{I} ,$$
(110)

where

$$H_{1}^{{\left( r \right)}} = \left( {1 + e^{{s\left( r \right)}} } \right)\left( {\lambda _{u}^{{\left( r \right)}} + 2\gamma _{2}^{{\left( r \right)}} \zeta ^{{s\left( r \right)}} + \gamma ^{{\left( r \right)}} \zeta ^{{s\left( r \right)}} } \right) + \nu ^{{_{1}^{{\prime \left( r \right)}} }} e^{{s\left( r \right)}} ,$$
(111)
$$H_{2}^{{\left( r \right)}} = 2\mu _{m}^{{s\left( r \right)}} - \gamma ^{{\left( r \right)}} \zeta ^{{s\left( r \right)}} + \left( {2\mu _{m}^{{s\left( r \right)}} - \gamma ^{{\left( r \right)}} \zeta ^{{s\left( r \right)}} + 6\nu ^{{_{2}^{{\prime \left( r \right)}} }} + 8\nu ^{{_{3}^{{\prime \left( r \right)}} }} } \right) ,$$
(112)
$$H_{3}^{{\left( r \right)}} = \left( {\gamma _{2}^{{\left( r \right)}} + \gamma ^{{\left( r \right)}} } \right)e^{{s\left( r \right)}} - \gamma ^{{\left( r \right)}} e_{{33}}^{{s\left( r \right)}} + 2\gamma _{3}^{{\left( i \right)}} \zeta ^{{s\left( r \right)}} - \alpha ^{{s\left( r \right)}} M^{{s\left( r \right)}} ,$$
(113)
$$H_{4}^{\left( r \right)} = 2\gamma_{2}^{\left( r \right)} e^{s\left( r \right)} - \gamma^{\left( r \right)} e_{13}^{s\left( r \right)} ,\quad r = 1, \, 2.$$
(114)

The membrane stiffness \(W\) is only related to the component \(G_{65}\). Substituting Eqs. (92)–(114) in Eqs. (66) and (67) can obtain the wave R/T coefficients of an oblique-incidence plane wave on the plane interface across two dissimilar media filled with the viscous fluids.

Appendix D: Qi et al. (2021) R/T Coefficient Equations

Qi et al. (2021) considered the seismic wave with the frequency much lower than Biot’s characteristic frequency, i.e.,

$$\omega \ll \omega_{c} = \frac{\eta \phi }{{a_{t} k_{0} \rho_{f} }}.$$
(115)

In this case, the wavenumbers of fast P, slow P and S waves are given by

$$k_{P} = \frac{\omega }{{\sqrt {{H \mathord{\left/ {\vphantom {H \rho }} \right. \kern-0pt} \rho }} }},k_{SP} = \sqrt {\frac{i\omega \eta }{{k_{0} N}}} ,{\text{and}}\,k_{S} = \frac{\omega }{{\sqrt {{{\mu_{m} } \mathord{\left/ {\vphantom {{\mu_{m} } \rho }} \right. \kern-0pt} \rho }} }},$$
(116)

where \(N = {{ML} \mathord{\left/ {\vphantom {{ML} H}} \right. \kern-0pt} H}\), \(L = K_{m} + {4 \mathord{\left/ {\vphantom {4 3}} \right. \kern-0pt} 3}\mu_{m}\), \(H = L + \alpha^{2} M\). Combining the continuous boundary conditions of wave displacement components and traction components, Qi et al. (2021) further derived the exact R/T coefficient equations for fluid-saturated porous media in the absence of in situ effective pressure. A system of linear equations in terms of the amplitudes of seven waves in Qi et al. (2021) can be expressed as

$$\sum\limits_{j = 1}^{6} {G_{ij} d_{j} } = b_{i} ,$$
(117)

where

$${\varvec{b}} = \left[ { - f_{I} , \, - g_{1P} , \, 0, \, - k_{1P}^{2} H^{\left( 1 \right)} + 2\mu_{m} f_{I}^{2} , \, - 2\mu_{m} f_{I} g_{1P} , \, - k_{1P}^{2} C^{\left( 1 \right)} } \right]^{T} ,$$
(118)

and

$$G_{11} = f_{I} ,G_{12} = f_{I} ,G_{13} = - g_{1S} ,G_{14} = - f_{I} ,G_{15} = - f_{I} ,G_{16} = g_{2S} ,$$
(119)
$$G_{21} = g_{1P} ,G_{22} = g_{1SP} ,G_{23} = f_{I} ,G_{24} = - g_{2P} ,G_{25} = - g_{2SP} ,G_{26} = - f_{I} ,$$
(120)
$$G_{31} = 0,G_{32} = \lambda^{0\left( 1 \right)} g_{1SP} ,G_{33} = 0,G_{34} = 0,G_{35} = - \lambda^{0\left( 2 \right)} g_{2SP} ,G_{36} = 0,$$
(121)
$$G_{41} = H^{\left( 1 \right)} k_{1P}^{2} - 2\mu_{m} f_{I}^{2} ,G_{42} = \left( {H^{\left( 1 \right)} + C^{\left( 1 \right)} \lambda^{0\left( 1 \right)} } \right)k_{1SP}^{2} - 2\mu_{m} f_{I}^{2} ,G_{43} = 2\mu_{m} f_{I} g_{1S} ,$$
(122)
$$G_{44} = - H^{\left( 2 \right)} k_{2P}^{2} + 2\mu_{m} f_{I}^{2} ,G_{45} = - \left( {H^{\left( 2 \right)} + \lambda^{0\left( 2 \right)} C^{\left( 2 \right)} } \right)k_{2SP}^{2} + 2\mu_{m} f_{I}^{2} ,G_{46} = - 2\mu_{m} f_{I} g_{2S} ,$$
(123)
$$G_{51} = 2\mu_{m} f_{I} g_{1P} ,G_{52} = 2\mu_{m} f_{I} g_{1SP} ,G_{53} = \mu_{m} \left( {f_{I}^{2} - g_{1S}^{2} } \right),$$
(124)
$$G_{54} = - 2\mu_{m} f_{I} g_{2P} ,G_{55} = - 2\mu_{m} f_{I} g_{2SP} ,G_{56} = - \mu_{m} \left( {f_{I}^{2} - g_{2S}^{2} } \right),$$
(125)
$$G_{61} = C^{\left( 1 \right)} k_{1P}^{2} ,G_{62} = \left( {C^{\left( 1 \right)} + \lambda^{0\left( 1 \right)} M^{\left( 1 \right)} } \right)k_{1SP}^{2} ,G_{63} = 0,$$
(126)
$$G_{64} = - C^{\left( 2 \right)} k_{2P}^{2} ,G_{65} = - \left( {C^{\left( 2 \right)} + \lambda^{0\left( 2 \right)} M^{\left( 2 \right)} } \right)k_{2SP}^{2} + \lambda^{0\left( 2 \right)} Wg_{2SP} ,G_{66} = 0,$$
(127)

where

$$\lambda^{0} = - \frac{{K_{m} + {4 \mathord{\left/ {\vphantom {4 3}} \right. \kern-0pt} 3}\mu_{m} + \alpha^{2} M}}{\alpha M}.$$
(128)

Substituting Eqs. (119)–(127) in Eqs. (66) and (67) can obtain the wave R/T coefficients on the plane interface across two dissimilar fluid-saturated media free of effective pressure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zong, Z., Rezaee, R. et al. Pressure Effects on Plane Wave Reflection and Transmission in Fluid-Saturated Porous Media. Surv Geophys (2024). https://doi.org/10.1007/s10712-024-09829-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10712-024-09829-9

Keywords

Navigation