Skip to main content
Log in

Geofluid Discrimination Incorporating Poroelasticity and Seismic Reflection Inversion

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Geofluid discrimination plays an important role in the fields of hydrogeology, geothermics, and exploration geophysics. A geofluid discrimination approach incorporating linearized poroelasticity theory and pre-stack seismic reflection inversion with Bayesian inference is proposed in this study to identify the types of geofluid underground. Upon the review of the development of different geofluid indicators, the fluid modulus is defined as the geofluid indicator mainly affected by the fluid contained in reservoirs. A novel linearized P-wave reflectivity equation coupling the fluid modulus is derived to avoid the complicated nonlinear relationship between the fluid modulus and seismic data. Model examples illustrate the accuracy of the proposed linearized P-wave reflectivity equation comparing to the exact P-wave reflectivity equation even at moderate incident angle, which satisfies the requirements of the parameter estimations with P-wave pre-stack seismic data. Convoluting this linearized P-wave reflectivity equation with seismic wavelets as the forward solver, a pragmatic pre-stack Bayesian seismic inversion method is presented to estimate the fluid modulus directly. Cauchy and Gaussian probability distributions are utilized for prior information of the model parameters and the likelihood function, respectively, to enhance the inversion resolution. The preconditioned conjugate gradient method is coupled in the optimization of the objective function to weaken the strong degree of correlation among the four model parameters and enhance the stability of those parameter estimations simultaneously. The synthetic examples demonstrate the feasibility and stability of the proposed novel seismic coefficient equation and inversion approach. The real data set illustrates the efficiency and success of the proposed approach in differentiating the geofluid filled reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aki K, Richards PG (1980) Quantitative seismology, 2nd edn. W.H. Freeman and Co, San Francisco

    Google Scholar 

  • Alemie W, Sacchi MD (2011) High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution. Geophysics 76(3):R43–R55

    Article  Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28:168–178

    Article  Google Scholar 

  • Buland A, Omre H (2003) Bayesian linearized AVO inversion. Geophysics 68(1):185–198

    Article  Google Scholar 

  • Castagna JP, Swan HW (1997) Principles of AVO crossplotting. Lead Edge 16(4):337–344

    Article  Google Scholar 

  • Debski W, Tarantola A (1995) Information on elastic parameters obtained from the amplitudes of reflected waves. Geophysics 60(5):1426–1436

    Article  Google Scholar 

  • Downton JE (2005) Seismic parameter estimation from AVO inversion: Ph.D. thesis, University of Calgary

  • Gassmann F (1951) Uber die elastizitat poroser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich 96(1):1–23

    Google Scholar 

  • Gidlow P, Smith G, Vail P (1992) Hydrocarbon detection using fluid factor traces, a case study: How useful is AVO analysis. Paper presented at the joint SEG/EAEG summer research workshop

  • Goodway B, Chen T, Downton J (1997) Improved AVO fluid detection and lithology discrimination using lamé petrophysical parameters; “λρ”, μρ, λμ fluid stack”, from P and S inversions. Paper presented at the SEG annual meeting

  • Grana D, Paparozzi E, Mancini S et al (2013) Seismic driven probabilistic classification of reservoir facies for static reservoir modelling: a case history in the Barents Sea. Geophys Prospect 61(3):613–629

    Article  Google Scholar 

  • Han D-H, Batzle ML (2004) Gassmann’s equation and fluid-saturation effects on seismic velocities. Geophysics 69(2):398–405

    Article  Google Scholar 

  • Kabir N, Crider R, Ramkhelawan R et al (2006) Can hydrocarbon saturation be estimated using density contrast parameter. CSEG Recorder C31–C37

  • Kurt H (2007) Joint inversion of AVA data for elastic parameters by bootstrapping. Comput Geosci 33(3):367–382

    Article  Google Scholar 

  • Lavaud B, Kabir N, Chavent G (1999) Pushing AVO inversion beyond linearized approximation. J Seism Explor 8(3):279–302

    Google Scholar 

  • Mavko G, Mukerji T (1995) Seismic pore space compressibility and Gassmann’s relation. Geophysics 60(6):1743–1749

    Article  Google Scholar 

  • Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res 100(B7):12431–12447

    Article  Google Scholar 

  • Neves F, Singh S (1996) Sensitivity study of seismic reflection/refraction data. Geophys J Int 126(2):470–476

    Article  Google Scholar 

  • Ostrander WJ (1984) Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence. Geophysics 49(10):1637–1648

    Article  Google Scholar 

  • Quakenbush M, Shang B, Tuttle C (2006) Poisson impedance. Lead Edge 25(2):128–138

    Article  Google Scholar 

  • Roden R, Forrest M, Holeywell R et al (2014) The role of AVO in prospect risk assessment. Interpretation 2(2):SC61–SC76

    Article  Google Scholar 

  • Ross CP (2010) AVO ritualization and functionalism (then and now). Lead Edge 29(5):532–538

    Article  Google Scholar 

  • Russell BH, Hedlin K, Hilterman FJ et al (2003) Fluid-property discrimination with AVO: a Biot–Gassmann perspective. Geophysics 68(1):29–39

    Article  Google Scholar 

  • Russell BH, Gray D, Hampson DP (2011) Linearized AVO and poroelasticity. Geophysics 76(3):C19–C29

    Article  Google Scholar 

  • Rutherford SR, Williams RH (1989) Amplitude-versus-offset variations in gas sands. Geophysics 54(6):680–688

    Article  Google Scholar 

  • Sacchi MD, Ulrych TJ (1995) High-resolution velocity gathers and offset space reconstruction. Geophysics 60(4):1169–1177

    Article  Google Scholar 

  • Schmitz T, Jokat W (2007) Amplitude versus offset analyses of the deep sedimentary structures at the northern flank of the Porcupine Basin, SW of Ireland. Int J Earth Sci 96(1):171–184

    Article  Google Scholar 

  • Smith GC, Gidlow PM (1987) Weighted stacking for rock property estimation and detection of gas. Geophys Prospect 35(9):993–1014

    Article  Google Scholar 

  • Tarantola A (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Paper presented at the SEG annual meeting

  • Ursin B, Tjäland E (1996) The information content of the elastic reflection matrix. Geophys J Int 125(1):214–228

    Article  Google Scholar 

  • Yi BY, Lee GH, Horozal S et al (2011) Qualitative assessment of gas hydrate and gas concentrations from the AVO characteristics of the BSR in the Ulleung Basin, East Sea (Japan Sea). Mar Pet Geol 28(10):1953–1966

    Article  Google Scholar 

  • Yin X, Zhang S (2014) Bayesian inversion for effective pore-fluid bulk modulus basedon fluid-matrix decoupled amplitude variation with offset approximation. Geophysics 79(5):R221–R232

    Article  Google Scholar 

  • Zong Z, Yin X, Wu G (2012) AVO inversion and poroelasticity with P- and S-wave moduli. Geophysics 77(6):N29–N36

    Article  Google Scholar 

  • Zong Z, Yin X, Wu G (2013a) Direct inversion for a fluid factor and its application in heterogeneous reservoirs. Geophy Prospect 61(5):998–1005

    Article  Google Scholar 

  • Zong Z, Yin X, Wu G (2013b) Elastic impedance parameterization and inversion with Young’s modulus and Poisson’s ratio. Geophysics 78(6):N35–N42

    Article  Google Scholar 

  • Zong Z, Yin X, Wu G (2013c) Multi-parameter nonlinear inversion with exact reflection coefficient equation. J Appl Geophys 98:21–32

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the sponsorship of the National 973 Program of China (2013CB228604), China Postdoctoral Science Foundation (2014M550379), Natural Science Foundation of Shandong (2014BSE28009), Science Foundation for Postdoctoral Scientists of Shandong (201401018), Science Foundation for Postdoctoral Scientists of Qingdao, and Science Foundation from SINOPEC Key Laboratory of Geophysics (33550006-14-FW2099-0038). The first author acknowledges the support of the Australian and Western Australian Governments and the North West Shelf Joint Venture Partners, as well as the Western Australian Energy Research Alliance (WA: ERA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyun Zong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, Z., Yin, X. & Wu, G. Geofluid Discrimination Incorporating Poroelasticity and Seismic Reflection Inversion. Surv Geophys 36, 659–681 (2015). https://doi.org/10.1007/s10712-015-9330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-015-9330-6

Keywords

Navigation