Skip to main content
Log in

Characteristics of Azimuthal Seismic Reflection Response in Horizontal Transversely Isotropic Media under Horizontal In Situ Stress

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Anisotropy is ubiquitous in the Earth's crust, which causes the elastic characteristics of seismic waves to change with direction. The study of seismic wave anisotropy is of great significance to seismic exploration, prediction and geodynamics. As one of the sources of seismic anisotropy, in situ stress belongs to secondary anisotropy as common as the intrinsic and fracture-induced anisotropy, but it is often ignored among the sources of seismic anisotropy. Therefore, we focus on the study of seismic anisotropy under the influence of in situ stress using the nonlinear acoustoelasticity theory. Based on a horizontal transversely isotropic (HTI) model and the linear slip theory, the characteristics of azimuthal seismic reflection response in anisotropic media under horizontal in situ stress are discussed in this paper. Firstly, by using the quasi-linear relationship between stress and Tsvankin’s anisotropic parameters and the transformation relationship between anisotropic and fracture parameters in HTI medium, the elastic stiffness matrix of an HTI medium with the effect of horizontal in situ stress is established. Secondly, the reflection coefficient of PP-wave seismic data for a planar weak-contrast interface separating two weak-anisotropy and small-stress HTI half-spaces is derived using both the seismic scattering theory and the stiffness matrix under horizontal in situ stress, building the quantitative relationship between azimuthal seismic reflection characteristics and the model parameters, such as the background elastic parameters, the fracture parameters and the horizontal-stress-induced anisotropic parameters. Finally, the variation rules of azimuthal seismic reflection response characteristics of four elastic interfaces under different in situ stress conditions are analyzed. The results demonstrate that the seismic inversion for fracture parameters and horizontal-stress-induced anisotropic parameters is more favorable under the condition of large incident angle. In addition, the effect of horizontal in situ stress on the reflection coefficient depends on the second- and third-order elastic properties of the rock itself. Also, the established seismic PP-wave reflection coefficient equation has provided an alternative approach to calculate the magnitude of horizontal in situ stress.

Article Highlights

  • A novel linearized PP-wave reflection coefficient is presented for HTI media with the effect of horizontal in situ stress

  • The response law of azimuthal seismic reflection characteristics induced by horizontal in situ stress is demonstrated

  • A simple inversion method is provided to calculate the magnitude of horizontal in situ stress

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bakulin A, Grechka V, Tsvankin I (2000) Estimation of fracture parameters from reflection seismic data, part I: HTI model due to a single fracture set. Geophysics 65:1788–1802

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I (2000) Estimation of fracture parameters from reflection seismic data, part II: fractured models with orthorhombic symmetry. Geophysics 65:1803–1817

    Article  Google Scholar 

  • Bourgoyne AT Jr, Milheim KK, Chenevert ME, Young FS (1991) Applied drilling engineering. Soc Petr Eng 58:286–287

    Google Scholar 

  • Chen FB, Zong Z, Jiang M (2021) Seismic reflectivity and transmissivity parameterization with the effect of normal in-situ stress. Geophys J Int 226:1599–1614

    Article  Google Scholar 

  • Chen FB, Zong Z, Yin X, Feng Y (2022a) Accurate formulae for P-wave reflectivity and transmissivity for a non-welded contact interface with the effect of in situ vertical stress. Geophys J Int 229:311–327

    Article  Google Scholar 

  • Chen FB, Zong Z, Yin X (2022) Acoustothermoelasticity for joint effects of stress and thermal fields on wave dispersion and attenuation. J Geophys Res Solid Earth 127:23671

    Article  Google Scholar 

  • Chen FB, Zong Z, Yin X (2022) Horizontal stress inversion based on azimuthal difference in P-wave reflectivity. Second Int Meet Appl Geosci Energy 25:218–222

    Article  Google Scholar 

  • Crampin S (1984) Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys J Roy Astron Soc 76:133–145

    Article  Google Scholar 

  • Fjær E, Holt R, Horsrud P, Raaen I (1992) Petroleum related rock mechanics. Elsevier Science Publ. Co

    Google Scholar 

  • Gandhi N, Michaels JE, Lee SJ (2012) Acoustoelastic Lamb wave propagation in biaxially stressed plates. J Acoust Soc Am 132:1284–1293

    Article  Google Scholar 

  • Gray M, Tappan M, Jack D (1998) The rock physics handbook: tools for seismic analysis in porous media. University of Cambridge

    Google Scholar 

  • Guo J, Han T, Fu L, Xu D, Fang X (2019) Effective elastic properties of rocks with transversely isotropic background permeated by aligned penny-shaped cracks. J Geophys Res Solid Earth 124:400–424

    Article  Google Scholar 

  • Hornby BE, Schwartz LM, Hudson JA (1994) Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics 59:1570–1583

    Article  Google Scholar 

  • Hsu CJ, Schoenberg M (1993) Elastic waves through a simulated fractured medium. Geophysics 58:964–977

    Article  Google Scholar 

  • Hudson JA (1980) Overall properties of a cracked solid. Math Proc Cambridge Philos Soc 88:371–384

    Article  Google Scholar 

  • Hudson JA (1981) Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J Int 64:133–150

    Article  Google Scholar 

  • Hudson JA (1988) Seismic wave propagation through material containing partially saturated cracks. Geophys J Int 92:33–37

    Article  Google Scholar 

  • Hudson JA, Liu E, Crampin S (1996) The mechanical properties of materials with interconnected cracks and pores. Geophys J Int 124:105–112

    Article  Google Scholar 

  • Hughes DS, Kelly JL (1953) Second -order elastic deformation of solids. Phys Rev 92:1145–1149

    Article  Google Scholar 

  • Johnson PA, Rasolofosaon PNJ (1996) Nonliear elasticity and stressinduced anisotropy in rock. J Geophys Res 101:3113–3124

    Article  Google Scholar 

  • Liu E, Martinez A (2013) Seismic fracture characterization. EAGE Publications

    Google Scholar 

  • Liu J, Cui Z, Wang K (2007) Reflection and transmission of acoustic waves at the interface between rocks in the presence of elastic-plastic deformations. J Geophys Eng 4:232–241

    Article  Google Scholar 

  • Liu J, Cui Z, Wang K (2009) The relationships between uniaxial stress and reflection coefficients. Geophys J Int 179:1584–1592

    Article  Google Scholar 

  • Liu J, Cui Z, Wang K (2016) Relationships between uniaxial stress and S-wave reflection coefficients. Chinese J Geophys 59:1469–1476

    Google Scholar 

  • Liu J, Cui Z, Wang K, Kundu T (2017) Determining maximum shear stress in confined substrate from elastic wave reflection coefficient. Sci China Earth Sci 60:1147–1158

    Article  Google Scholar 

  • Murnaghan TD (1951) Finite deformation of an elastic solid. Wiley

    Google Scholar 

  • Nur A, Simmons G (1969) Stress-induced velocity anisotropy in rock, an experimental study. J Geophys Res 74:6667–6674

    Article  Google Scholar 

  • Pan X, Zhang G, Yin X (2018a) Seismic scattering inversion for anisotropy in heterogeneous orthorhombic media. Chinese J Geophys 61:267–283

    Google Scholar 

  • Pan X, Zhang G, Yin X (2018b) Azimuthally pre-stack seismic inversion for orthorhombic anisotropy driven by rock physics. Sci China Earth Sci 61:425–440

    Article  Google Scholar 

  • Pan X, Zhang G (2018a) Bayesian seismic inversion for estimating fluid content and fracture parameters in a gas-saturated fractured porous reservoir. Sci China Earth Sci 62:798–811

    Article  Google Scholar 

  • Pan X, Zhang G (2018b) Model parameterization and PP-wave amplitude versus angle and azimuth direct inversion for fracture quasi-weaknesses in weakly anisotropic elastic media. Surv Geophys 39:937–964

    Article  Google Scholar 

  • Pao YH, Sachse W, Fukuoka H (1984) Acoustoelasticity and ultrasonic measurements of residual stresses: physical acoustics, Mason. R. N., Academic Press

    Google Scholar 

  • Prioul R, Bakulin A, Bakulin V (2001) A three-parameter model for predicting acoustic velocities in transversely isotropic rocks under arbitrary stress. SEG Tech Progr Expanded Abstracts San Antonio, Texas 20:1732–1735

    Google Scholar 

  • Prioul R, Bakulin A, Bakulin V (2004) Nonlinear rock physics model for estimation of 3D subsurface stress in anisotropic formations: theory and laboratory verification. Geophysics 69:415–425

    Article  Google Scholar 

  • Rasolofosaon P (1998) Stress-induced seismic anisotropy revisited. Oil and Gas Sci Technol-Rev IFP 53:679–692

    Google Scholar 

  • Sarkar D, Bakulin A, Kranz R (2003) Anisotropic inversion of seismic data for stressed media: theory and a physical modeling study on Berea Sandstone. Geophysics 68:690–704

    Article  Google Scholar 

  • Schoenberg M (1980) Elastic wave behavior across linear slip interfaces. J Acoust Soc Am 68:1516–1521

    Article  Google Scholar 

  • Schoenberg M (1983) Reflection of elastic waves from periodically stratified media with interfacial slip. Geophys Prosp 31:265–292

    Article  Google Scholar 

  • Schoenberg M, Douma J (1988) Elastic wave propagation in media with parallel fractures and aligned cracks. Geophys Prosp 36:571–590

    Article  Google Scholar 

  • Schoenberg M, Sayers CM (1995) Seismic anisotropy of fractured rock. Geophysics 60:204–211

    Article  Google Scholar 

  • Shaw RK, Sen MK (2004) Born integral, stationary phase and linearized refection coefcients in weak anisotropic media. Geophys J Int 158:225–238

    Article  Google Scholar 

  • Shaw RK, Sen MK (2006) Use of AVOA data to estimate fuid indicator in a vertically fractured medium. Geophysics 71:C15–C24

    Article  Google Scholar 

  • Sinha BK (1982) Elastic waves in crystals under a bias. Ferroelectrics 41:61–73

    Article  Google Scholar 

  • Sinha BK, Kostek S (1996) Stress-induced azimuthal anisotropy in borehole flexural waves. Geophysics 61:1899–1907

    Article  Google Scholar 

  • Song G, Du X, Lv Y, Shi Y, Zhang B, He C (2020) New acoustoelastic effect characterization method for acoustic reflection and transmission coefficient of prestressed thin plate at liquid-solid interface: Journal of. Mech Eng 56:19–25

    Article  Google Scholar 

  • Tatsuo T, Yukio I (1986) Acoustical birefringence of ultrasonic waves in deformed isotropic elastic materials. Int J Solids Struct 4:383–389

    Article  Google Scholar 

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966

    Article  Google Scholar 

  • Thomsen L (1995) Elastic anisotropy due to aligned cracks in porous rock. Geophys Prosp 43:805–830

    Article  Google Scholar 

  • Thurston RN, Brugger K (1964) Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys Rev A 133:1604–1610

    Article  Google Scholar 

  • Thurston RN (1974) Waves in solid: MECHANICS OF SOLIDS IV. Springer-verlag, Berlin, pp 109–308

    Google Scholar 

  • Tian J, Wang E (2006) Ultrasonic method for measuring in-situ stress based on acoustoelasticity theory. Chin J Rock Mech Eng 25:3719–3724

    Google Scholar 

  • Tsvankin I (1997) Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics 62:1292–1309

    Article  Google Scholar 

  • Winkler KW, Liu XZ (1996) Measurements of third-order elastic constants in rocks. J Acoust Soc Am 100:1392–1398

    Article  Google Scholar 

  • Winkler KW (2004) L McGowan, Nonlinear acoustoelastic constants of dry and saturated rocks. J Geophys Res 109:1–9

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (42004107) and the Natural Science Foundation of Hunan Province (2021JJ30814) for funding this research. We also thank the reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinpeng Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Acoustoelasticity Theory Model in Natural State

As illustrated in Fig. 1, following Tian and Wang (2006) and Song et al. (2020), the particle displacement of static deformation from the natural state to the initial state is given by

$${\mathbf{u}}^{i} \left( {{\varvec{\upxi}}} \right) = {\mathbf{X}} - {{\varvec{\upxi}}}.$$
(57)

The particle displacement of dynamic deformation from the natural state to the final state is given by

$${\mathbf{u}}^{f} \left( {{{\varvec{\upxi}}},t} \right) = {\mathbf{x}} - {{\varvec{\upxi}}},$$
(58)

where the particle displacement of static deformation is far more than that of dynamic deformation, i.e., \({\mathbf{u}}^{i} \left( {{\varvec{\upxi}}} \right) \gg {\mathbf{u}}^{f} \left( {{{\varvec{\upxi}}},t} \right)\). Then, the displacement caused by the seismic wave can be obtained as

$${\mathbf{u}}\left( {{{\varvec{\upxi}}},t} \right) = {\mathbf{x}} - {\mathbf{X}} = {\mathbf{u}}^{f} - {\mathbf{u}}^{i} .$$
(59)

Now, the Lagrangian strains \(E\) of the initial and final states, respectively, can be expressed as

$$E_{\alpha \beta }^{i} = \frac{1}{2}\left( {\frac{{\partial u_{\alpha }^{i} }}{{\partial \xi_{\beta } }} + \frac{{\partial u_{\beta }^{i} }}{{\partial \xi_{\alpha } }} + \frac{{\partial u_{\gamma }^{i} }}{{\partial \xi_{\alpha } }}\frac{{\partial u_{\gamma }^{i} }}{{\partial \xi_{\beta } }}} \right) = e_{\alpha \beta }^{i} + \frac{1}{2}\frac{{\partial u_{\gamma }^{i} }}{{\partial \xi_{\alpha } }}\frac{{\partial u_{\gamma }^{i} }}{{\partial \xi_{\beta } }},$$
(60)
$$E_{\alpha \beta }^{f} = \frac{1}{2}\left( {\frac{{\partial u_{\alpha }^{f} }}{{\partial \xi_{\beta } }} + \frac{{\partial u_{\beta }^{f} }}{{\partial \xi_{\alpha } }} + \frac{{\partial u_{\gamma }^{f} }}{{\partial \xi_{\alpha } }}\frac{{\partial u_{\gamma }^{f} }}{{\partial \xi_{\beta } }}} \right) = e_{\alpha \beta }^{f} + \frac{1}{2}\frac{{\partial u_{\gamma }^{f} }}{{\partial \xi_{\alpha } }}\frac{{\partial u_{\gamma }^{f} }}{{\partial \xi_{\beta } }}.$$
(61)

where the prestrain is assumed to be a small deformation, and the strains can be expressed as

$$e_{\alpha \beta }^{i} = \frac{1}{2}\left( {\frac{{\partial u_{\alpha }^{i} }}{{\partial \xi_{\beta } }} + \frac{{\partial u_{\beta }^{i} }}{{\partial \xi_{\alpha } }}} \right).$$
(62)
$$e_{\alpha \beta }^{f} = \frac{1}{2}\left( {\frac{{\partial u_{\alpha }^{f} }}{{\partial \xi_{\beta } }} + \frac{{\partial u_{\beta }^{f} }}{{\partial \xi_{\alpha } }}} \right).$$
(63)

Then, the strain caused by seismic-wave small disturbance from the initial state to the final state is approximate as

$$E_{\alpha \beta }^{{}} = E_{\alpha \beta }^{f} - E_{\alpha \beta }^{i} \approx e_{\alpha \beta }^{{}} + \frac{1}{2}\frac{{\partial u_{\gamma }^{i} }}{{\partial \xi_{\alpha } }}\frac{{\partial u_{\gamma }^{{}} }}{{\partial \xi_{\beta } }} + \frac{1}{2}\frac{{\partial u_{\gamma }^{i} }}{{\partial \xi_{\beta } }}\frac{{\partial u_{\gamma }^{{}} }}{{\partial \xi_{\alpha } }}.$$
(64)

Assuming that the rock is elastic, and the relation between Piola–Kirchhoff stress tensor \(T_{ij}\) and strain energy function \(W\) can be written as

$$T_{ij} = \frac{\partial W}{{\partial E_{ij} }},$$
(65)

where the strain energy function can be approximated as

$$W = \frac{1}{2!}C_{ijkl} E_{ij} E_{kl} + \frac{1}{3!}C_{ijklmn} E_{ij} E_{kl} E_{mn} + \cdots ,$$
(66)

where \(C_{ijkl}\) and \(C_{ijklmn}\) represent the second- and third-order elastic stiffness components, respectively. Generally, the independent second- and third-order elastic constants are 21 and 56, respectively, when taking the symmetry into account (Murnaghan, 1951). For the isotropic rock, the independent second- and third-order elastic constants are 2 and 3, respectively.

According to Eqs. 8 and 9, we neglect the higher-order terms, and get

$$T_{\alpha \beta }^{i} = C_{\alpha \beta \gamma \delta } E_{\gamma \delta }^{i} + \frac{1}{2}C_{\alpha \beta \gamma \delta \varepsilon \eta } E_{\gamma \delta }^{i} E_{\varepsilon \eta }^{i} ,$$
(67)
$$T_{\alpha \beta }^{f} = C_{\alpha \beta \gamma \delta } E_{\gamma \delta }^{f} + \frac{1}{2}C_{\alpha \beta \gamma \delta \varepsilon \eta } E_{\gamma \delta }^{f} E_{\varepsilon \eta }^{f} .$$
(68)

Subtracting Eq. 68 from Eq. 67 and ignoring the higher-order term, we can obtain the increment of stress as

$$T_{\alpha \beta }^{{}} = C_{\alpha \beta \gamma \delta } E_{\gamma \delta }^{{}} + C_{\alpha \beta \gamma \delta \varepsilon \eta } e_{\gamma \delta }^{i} e_{\varepsilon \eta }^{{}} .$$
(69)

Substituting Eq. 64 into Eq. 69, we can get

$$T_{\alpha \beta }^{{}} = C_{\alpha \beta \gamma \delta } \left( {\delta_{\kappa \gamma } + \frac{{\partial u_{\kappa }^{i} }}{{\partial \xi_{\gamma } }}} \right)\frac{{\partial u_{\kappa } }}{{\partial \xi_{\delta } }} + C_{\alpha \beta \gamma \delta \varepsilon \eta } \frac{{\partial u_{\gamma }^{i} }}{{\partial \xi_{\delta } }}\frac{{\partial u_{\varepsilon } }}{{\partial \xi_{\eta } }},$$
(70)

where \(\delta_{\kappa \gamma }\) represents a Kronecker delta. In addition, the motion equation of rocks from natural state to initial state under prestressed condition is

$$\frac{\partial }{{\partial \xi_{\beta } }}\left[ {T_{\beta \gamma }^{i} \left( {\frac{{\partial u_{\alpha }^{i} }}{{\partial \xi_{\gamma } }} + \delta_{\alpha \gamma } } \right)} \right] = 0.$$
(71)

Also, the motion equation of rocks from the natural state to the final state under the micro-disturbance and stress of seismic wave is

$$\frac{\partial }{{\partial \xi_{\beta } }}\left[ {T_{\beta \gamma }^{i} \left( {\frac{{\partial u_{\alpha }^{f} }}{{\partial \xi_{\gamma } }} + \delta_{\alpha \gamma } } \right)} \right] = \rho_{b} \frac{{\partial^{2} u_{\alpha }^{f} }}{{\partial t^{2} }}.$$
(72)

Subtracting Eq. 72 from Eq. 71, we can get the motion equation of rocks under the micro-disturbance of seismic wave as

$$\frac{\partial }{{\partial \xi_{\beta } }}\left[ {T_{\beta \gamma }^{{}} \left( {\frac{{\partial u_{\alpha }^{i} }}{{\partial \xi_{\gamma } }} + \delta_{\alpha \gamma } } \right) + T_{\beta \gamma }^{i} \frac{{\partial u_{\alpha }^{{}} }}{{\partial \xi_{\gamma } }}} \right] = \rho_{b} \frac{{\partial^{2} u_{\alpha }^{{}} }}{{\partial t^{2} }}.$$
(73)

Substituting Eq. 70 into Eq. 73, we can get

$$\frac{\partial }{{\partial \xi_{\beta } }}\left[ {\Gamma_{\alpha \beta \gamma \delta } \frac{{\partial u_{\gamma } }}{{\partial \xi_{\delta } }} + T_{\beta \gamma }^{i} \frac{{\partial u_{\alpha }^{{}} }}{{\partial \xi_{\gamma } }}} \right] = \rho_{b} \frac{{\partial^{2} u_{\alpha }^{{}} }}{{\partial t^{2} }},$$
(74)

where \(\Gamma_{\alpha \beta \gamma \delta } = C_{\alpha \beta \gamma \delta } + C_{\alpha \beta \kappa \delta } \frac{{\partial u_{\gamma }^{i} }}{{\partial \xi_{\kappa } }} + C_{\kappa \beta \gamma \delta } \frac{{\partial u_{\alpha }^{i} }}{{\partial \xi_{\kappa } }} + C_{\alpha \beta \gamma \delta \varepsilon \eta } e_{\varepsilon \eta }^{i}\).

Finally, the acoustoelasticity equation in the natural coordinate system can be expressed as

$$\Psi_{\alpha \beta \gamma \delta } \frac{{\partial^{2} u_{\gamma } }}{{\partial x_{\beta } \partial x_{\delta } }} = \rho_{b} \frac{{\partial^{2} u_{\alpha }^{{}} }}{{\partial t^{2} }},$$
(75)

where \(\Psi_{\alpha \beta \gamma \delta } = T_{\beta \delta }^{i} \delta_{\alpha \gamma } + \Gamma_{\alpha \beta \gamma \delta }\).

Appendix B: Acoustoelasticity Theory Model in Initial State

The motion equation of the rock in the final state after seismic-wave disturbance superimposed on the static deformation can be expressed in the initial coordinate system as

$$\frac{\partial }{{\partial X_{L} }}\left( {T_{KL}^{f} \frac{{\partial X_{j}^{{}} }}{{\partial X_{K} }}} \right) = \rho^{i} \frac{{\partial^{2} x_{j}^{{}} }}{{\partial t^{2} }},$$
(76)

where \(\rho^{i}\) denotes the density term in the initial state, \(T_{KL}^{f}\) denotes the Piola–Kirchhoff stress tensor, and can be written as

$$T_{KL}^{f} = T_{KL}^{{}} - T_{KL}^{i} ,$$
(77)

where \(T_{KL}^{i}\) denotes the Cauchy stress tensor in the initial state. Similarly, the Piola–Kirchhoff stress tensor and the Cauchy stress tensor in the natural coordinate system can be expressed as Eqs. 67 and 68.

In Eq. 76, the relationship between the Piola–Kirchhoff stress tensor \(T_{KL}^{f}\) and the Cauchy stress tensor \(T_{ij}^{f}\) in the final state can be expressed as

$$T_{ij}^{f} = \frac{1}{{\left| {{{\partial x} \mathord{\left/ {\vphantom {{\partial x} {\partial X}}} \right. \kern-\nulldelimiterspace} {\partial X}}} \right|}}\frac{{\partial x_{i} }}{{\partial X_{K} }}\frac{{\partial x_{j} }}{{\partial X_{L} }}T_{KL}^{f} = \frac{1}{{\left| {{{\partial x} \mathord{\left/ {\vphantom {{\partial x} {\partial X}}} \right. \kern-\nulldelimiterspace} {\partial X}}} \right|}}\left( {\delta_{iK} + \frac{{\partial u_{i} }}{{\partial X_{K} }}} \right)\left( {\delta_{jL} + \frac{{\partial u_{j} }}{{\partial X_{L} }}} \right)T_{KL}^{f} .$$
(78)

In the initial coordinate system, the static equilibrium equation of the rock in the initial state under the action of static stress \(T_{IJ}^{i}\) can be expressed as

$$\frac{{\partial T_{IJ}^{i} }}{{\partial X_{J} }} = 0.$$
(79)

Subtracting Eq. 76 from Eq. 79 and combining Eq. 78, we can get the motion equation of rocks under the micro-disturbance of seismic wave in the initial coordinate system as

$$T_{JK}^{i} \frac{{\partial^{2} u_{I} }}{{\partial X_{J} \partial X_{K} }} + \frac{{\partial T_{IJ} }}{{\partial X_{J} }} = \rho^{i} \frac{{\partial^{2} u_{I}^{{}} }}{{\partial t^{2} }}.$$
(80)

In Eq. 80, the stress increment \(T_{IJ}\) in the initial coordinate system can be expressed by the stress increment \(T_{\alpha \beta }\) in the natural coordinate system, that is

$$T_{IJ} = \frac{{\rho^{i} }}{{\rho_{b} }}\frac{{\partial X_{I} }}{{\partial \xi_{\alpha } }}\frac{{\partial X_{J} }}{{\partial \xi_{\beta } }}T_{\alpha \beta } .$$
(81)

Substituting Eq. 78 into Eq. 81, the stress increment \(T_{IJ}\) can be further expressed as

$$T_{IJ} = \delta_{I\alpha } \delta_{J\beta } \left( {T_{\alpha \beta } + T_{\alpha \gamma } \frac{{\partial u_{\beta }^{i} }}{{\partial \xi_{\gamma } }} + T_{\beta \gamma } \frac{{\partial u_{\alpha }^{i} }}{{\partial \xi_{\gamma } }}} \right) = C_{IJKL} \frac{{\partial u_{K} }}{{\partial X_{L} }},$$
(82)

where

$$C_{IJKL} = c_{IJKL} + c_{IJKLMN} e_{MN}^{i} + c_{MJKL} \frac{{\partial u_{I}^{i} }}{{\partial X_{M} }} + c_{IMKL} \frac{{\partial u_{J}^{i} }}{{\partial X_{M} }} + c_{IJML} \frac{{\partial u_{K}^{i} }}{{\partial X_{M} }} + c_{IJKM} \frac{{\partial u_{L}^{i} }}{{\partial X_{M} }},$$
(83)
$$c_{IJKL} = \delta_{I\alpha } \delta_{J\beta } \delta_{K\gamma } \delta_{L\delta } C_{\alpha \beta \gamma \delta } ,$$
(84)
$$c_{{IJKLMN}} = \delta _{{I\alpha }} \delta _{{J\beta }} \delta _{{K\gamma }} \delta _{{L\delta }} \delta _{{M\varepsilon }} \delta _{{N\eta }} C_{{\alpha \beta \gamma \delta \varepsilon \eta }} .$$
(85)

The difference between Eqs. 11 and 83 is the terms containing \(T_{IJ}\), and \(c_{IJKL} e_{NN}^{i}\). This is because that \(\left| {c_{IJKLMN} } \right| \gg \left| {c_{IJKL} } \right| \gg \left| {T_{IJ} } \right|\) and \(\left| {c_{IJKL} } \right| \gg \left| {c_{IJKL} e_{NN}^{i} } \right|\) for rocks. The exact effective elastic stiffness tensor \(C_{IJKL}\) in initial coordinate system can be found in Sinha (1982), Pao et al. (1984) and Liu et al. (2009).

Then, substituting Eq. 82 into Eq. 80, we can get the acoustoelasticity equation in initial coordinate system as

$$\frac{\partial }{{\partial X_{J} }}\left[ {\left( {\delta_{IK} T_{JL}^{i} + C_{IJKL} } \right)\frac{{\partial u_{K} }}{{\partial X_{L} }}} \right] = \rho^{i} \frac{{\partial^{2} u_{I}^{{}} }}{{\partial t^{2} }}.$$
(86)

Finally, the acoustoelasticity equation in the initial coordinate system can be expressed as

$$\Psi_{IJKL} \frac{{\partial^{2} u_{K} }}{{\partial X_{J} \partial X_{L} }} = \rho^{i} \frac{{\partial^{2} u_{I}^{{}} }}{{\partial t^{2} }},$$
(87)

where \(\Psi_{IJKL} = \delta_{IK} T_{JL}^{i} + C_{IJKL}\).

Appendix C: Derivation of PP-Wave Reflection Coefficient in a Stressed HTI Medium

For the incident and reflected P waves, the polarization and slowness vectors are given by (Shaw and Sens 2006)

$$t = \left[ {\sin \theta \cos \phi ,\sin \theta \sin \phi ,cos\theta } \right],$$
(88)
$$t^{\prime} = \left[ { - \sin \theta \cos \phi , - \sin \theta \sin \phi ,cos\theta } \right],$$
(89)
$$p = {1 \mathord{\left/ {\vphantom {1 {\alpha_{b}^{s} }}} \right. \kern-\nulldelimiterspace} {\alpha_{b}^{s} }}\left[ {\sin \theta \cos \phi ,\sin \theta \sin \phi ,cos\theta } \right],$$
(90)
$$p^{\prime} = {1 \mathord{\left/ {\vphantom {1 {\alpha_{b}^{s} }}} \right. \kern-\nulldelimiterspace} {\alpha_{b}^{s} }}\left[ { - \sin \theta \cos \phi , - \sin \theta \sin \phi ,cos\theta } \right],$$
(91)

where \(\alpha_{b}^{s}\) represents the P-wave velocity of the background stressed medium, and the expressions for \(\xi\) and \(\eta_{IJ}\) are also given by (Shaw and Sen 2006)

$$\xi = \cos^{2} \theta - \sin^{2} \theta = cos2\theta ,$$
(92)

and

$$\eta_{11} = {{\sin^{4} \theta \cos^{4} \theta } \mathord{\left/ {\vphantom {{\sin^{4} \theta \cos^{4} \theta } {\left( {\alpha_{b}^{s} } \right)^{2} }}} \right. \kern-\nulldelimiterspace} {\left( {\alpha_{b}^{s} } \right)^{2} }},\eta_{12} = {{\sin^{4} \theta \sin^{2} \phi \cos^{2} \theta } \mathord{\left/ {\vphantom {{\sin^{4} \theta \sin^{2} \phi \cos^{2} \theta } {\left( {\alpha_{b}^{s} } \right)^{2} }}} \right. \kern-\nulldelimiterspace} {\left( {\alpha_{b}^{s} } \right)^{2} }},\eta_{13} = {{\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } \mathord{\left/ {\vphantom {{\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } {\left( {\alpha_{b}^{s} } \right)^{2} ,}}} \right. \kern-\nulldelimiterspace} {\left( {\alpha_{b}^{s} } \right)^{2} ,}}$$
$$\eta_{22} = {{\sin^{4} \theta \sin^{4} \phi } \mathord{\left/ {\vphantom {{\sin^{4} \theta \sin^{4} \phi } {\left( {\alpha_{b}^{s} } \right)^{2} }}} \right. \kern-\nulldelimiterspace} {\left( {\alpha_{b}^{s} } \right)^{2} }},\eta_{23} = {{\sin^{2} \theta \sin^{2} \phi \cos^{2} \theta } \mathord{\left/ {\vphantom {{\sin^{2} \theta \sin^{2} \phi \cos^{2} \theta } {\left( {\alpha_{b}^{s} } \right)^{2} }}} \right. \kern-\nulldelimiterspace} {\left( {\alpha_{b}^{s} } \right)^{2} }},\eta_{33} = {{\cos^{4} \theta } \mathord{\left/ {\vphantom {{\cos^{4} \theta } {\left( {\alpha_{b}^{s} } \right)^{2} }}} \right. \kern-\nulldelimiterspace} {\left( {\alpha_{b}^{s} } \right)^{2} }},$$
$$\eta_{44} = - 4{{\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi } \mathord{\left/ {\vphantom {{\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi } {\left( {\alpha_{b}^{s} } \right)^{2} }}} \right. \kern-\nulldelimiterspace} {\left( {\alpha_{b}^{s} } \right)^{2} }},\eta_{55} = - 4{\kern 1pt} {{\sin^{2} \theta \cos^{2} \phi \cos^{2} \theta } \mathord{\left/ {\vphantom {{\sin^{2} \theta \cos^{2} \phi \cos^{2} \theta } {\left( {\alpha_{b}^{s} } \right)^{2} }}} \right. \kern-\nulldelimiterspace} {\left( {\alpha_{b}^{s} } \right)^{2} }},$$
$$\eta_{66} = 4{{\sin^{4} \theta \cos^{2} \phi \sin^{2} \phi } \mathord{\left/ {\vphantom {{\sin^{4} \theta \cos^{2} \phi \sin^{2} \phi } {\left( {\alpha_{b}^{s} } \right)^{2} }}} \right. \kern-\nulldelimiterspace} {\left( {\alpha_{b}^{s} } \right)^{2} }},\eta_{21} = \eta_{12} ,\eta_{31} = \eta_{13} ,\eta_{32} = \eta_{23} .$$
(93)

Combining Eqs. 92 and 93 and Eq. 37, and substituting into Eq. 36, we can get

$$\begin{gathered} R_{PP} (\theta ,\phi ) = \frac{{\Delta \rho_{b}^{s} }}{{4\rho_{b}^{s} }}\xi \sec^{2} \theta + \sum\limits_{m = 1}^{6} {\sum\limits_{n = 1}^{6} {\frac{{\Delta C_{mn} }}{{4\rho_{b}^{s} }}} } \hfill \\ = \frac{{\sec^{2} \theta }}{{4\rho_{b}^{s} }}\left\{ \begin{gathered} \hfill \Delta \rho_{b}^{s} \cos 2\theta + \frac{{\sin^{4} \theta \cos^{4} \phi }}{{\left( {\alpha_{b}^{s} } \right)^{2} }}\left[ {\Delta M_{b}^{s} - M_{b}^{s} \Delta \delta_{N}^{{}} + \frac{{M_{b}^{s} }}{{4g_{b} (1 - g_{b} )}}\Delta \Gamma_{p} } \right] \\ \hfill + \frac{{2\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi }}{{\left( {\alpha_{b}^{s} } \right)^{2} }}\left[ {\Delta \lambda_{b}^{s} - \lambda_{b}^{s} \Delta \delta_{N}^{{}} + \frac{{\lambda_{b}^{s} }}{{4g_{b} (1 - g_{b} )}}\Delta \Gamma_{p} } \right] \\ \hfill + \frac{{2\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi }}{{\left( {\alpha_{b}^{s} } \right)^{2} }}\left[ {\Delta \lambda_{b}^{s} - \lambda_{b}^{s} \Delta \delta_{N}^{{}} + \frac{{\lambda_{b}^{s} }}{{4g_{b} (1 - g_{b} )}}\Delta \Gamma_{p} } \right] \\ \hfill + \frac{{\sin^{4} \theta sin^{4} \phi }}{{\left( {\alpha_{b}^{s} } \right)^{2} }}\left[ {\Delta M_{b}^{s} - M_{b}^{s} \left( {\chi_{b}^{s} } \right)^{2} \Delta \delta_{N}^{{}} + \frac{{M_{b}^{s} \left( {\chi_{b}^{s} } \right)^{2} }}{{4g_{b} (1 - g_{b} )}}\Delta \Gamma_{p} } \right] \\ \hfill + \frac{{2\sin^{2} \theta \cos^{2} \theta sin^{2} \phi }}{{\left( {\alpha_{b}^{s} } \right)^{2} }}\left[ {\Delta M_{b}^{s} - M_{b}^{s} \left( {\chi_{b}^{s} } \right)^{2} \Delta \delta_{N}^{{}} + \frac{{M_{b}^{s} \left( {\chi_{b}^{s} } \right)^{2} }}{{4g_{b} (1 - g_{b} )}}\Delta \Gamma_{p} } \right] \\ \hfill + \frac{{\cos^{4} \theta }}{{\left( {\alpha_{b}^{s} } \right)^{2} }}\left[ {\Delta \lambda_{b}^{s} - \lambda_{b}^{s} \chi_{b}^{s} \Delta \delta_{N}^{{}} + \frac{{\lambda_{b}^{s} \chi_{b}^{s} }}{{4g_{b} (1 - g_{b} )}}\Delta \Gamma_{p} } \right] \\ \hfill \_\frac{{4\sin^{2} \theta \cos^{2} \theta sin^{2} \phi }}{{\left( {\alpha_{b}^{s} } \right)^{2} }}\Delta \mu_{b} \\ \hfill \_\frac{{4\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi }}{{\left( {\alpha_{b}^{s} } \right)^{2} }}\left[ {\Delta \mu_{b}^{s} - \mu_{b}^{s} \Delta \delta_{T}^{{}} + \mu_{b}^{s} \Delta \Gamma_{s} } \right] \\ \hfill + \frac{{4\sin^{2} \theta \sin^{2} \phi \cos^{2} \phi }}{{\left( {\alpha_{b}^{s} } \right)^{2} }}\left[ {\Delta \mu_{b}^{s} - \mu_{b}^{s} \Delta \delta_{T}^{{}} + \mu_{b}^{s} \Delta \Gamma_{s} } \right] \\ \end{gathered} \right\}. \hfill \\ \end{gathered}$$
(94)

After simplification, the linearized PP-wave reflection coefficient equation can be obtained

$$\begin{gathered} R_{PP} (\theta ,\phi ) = \frac{{\sec^{2} \theta }}{{4M_{b}^{s} }}\Delta M_{b}^{s} - 2\frac{{\sin^{2} \theta }}{{M_{b}^{s} }}\Delta \mu_{b}^{s} + \frac{1}{{2\rho_{b}^{s} }}\left( {1 - \frac{{\sec^{2} \theta }}{2}} \right)\Delta \rho_{b}^{s} \hfill \\ \begin{array}{*{20}c} {} & {} & {} \\ \end{array} - \frac{{\sec^{2} \theta }}{4}\left[ {2g_{b} \left( {\sin^{2} \theta \sin^{2} \phi + cos^{2} \theta } \right) - 1} \right]^{2} \Delta \delta_{N}^{{}} \hfill \\ \begin{array}{*{20}c} {} & {} & {} \\ \end{array} + g_{b} \sin^{2} \theta \cos^{2} \phi \left( {1 - \tan^{2} \theta \sin^{2} \phi } \right)\Delta \delta_{T}^{{}} \hfill \\ \begin{array}{*{20}c} {} & {} & {} \\ \end{array} + \frac{{\sec^{2} \theta }}{{16g_{b} \left( {1 - g_{b} } \right)}}\left[ {2g_{b} \left( {\sin^{2} \theta \sin^{2} \phi + cos^{2} \theta } \right) - 1} \right]^{2} \Delta \Gamma_{p} \hfill \\ \begin{array}{*{20}c} {} & {} & {} \\ \end{array} - g_{b} \sin^{2} \theta \cos^{2} \phi \left( {1 - \tan^{2} \theta \sin^{2} \phi } \right)\Delta \Gamma_{s} . \hfill \\ \end{gathered}$$
(95)

When the horizontal in situ stress disappears, that is, \(T_{11} = 0\). According to Eqs. 25 and 26, \(\Gamma_{p} = \Gamma_{s} = 0\). In that way, their perturbations \(\Delta \Gamma_{p}\) and \(\Delta \Gamma_{s}\) will also disappear.

Therefore, terms with \(\Delta \Gamma_{p}\) and \(\Delta \Gamma_{s}\) in Eq. 44 will become zero, and Eq. 44 will be reduced to the following form

$$\begin{gathered} R_{PP} (\theta ,\phi ) = \frac{{\sec^{2} \theta }}{{4M_{b}^{s} }}\Delta M_{b}^{s} - 2\frac{{\sin^{2} \theta }}{{M_{b}^{s} }}\Delta \mu_{b}^{s} + \frac{1}{{2\rho_{b}^{s} }}\left( {1 - \frac{{\sec^{2} \theta }}{2}} \right)\Delta \rho_{b}^{s} \\ - \frac{{\sec^{2} \theta }}{4}\left[ {2g_{b} \left( {\sin^{2} \theta \sin^{2} \phi + cos^{2} \theta } \right) - 1} \right]^{2} \Delta \delta_{N}^{{}} \\ + g_{b} \sin^{2} \theta \cos^{2} \phi \left( {1 - \tan^{2} \theta \sin^{2} \phi } \right)\Delta \delta_{T}^{{}} . \\ \end{gathered}$$
(96)

The form is the same as the reflection coefficient equation of unstressed HTI media derived by Pan and Zhang (2018a, b) without the effect of horizontal in situ stress. Compared with the PP-wave reflection coefficient Eq. 16 in Pan and Zhang (2018a, b), the elastic parameter in Eq. 44 is related to the horizontal in situ stress and has two additional terms \(\frac{{\sec^{2} \theta }}{{16g_{b} (1 - g_{b} )}}\left[ {2g_{b} (\sin^{2} \theta \sin^{2} \phi + cos^{2} \theta ) - 1} \right]^{2} \Delta \Gamma_{p}\) and \(g_{b} \sin^{2} \theta \cos^{2} \phi (1 - \tan^{2} \theta \sin^{2} \phi )\Delta \Gamma_{s}\) caused by the horizontal in situ stress.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Zhao, Z. & Zhang, D. Characteristics of Azimuthal Seismic Reflection Response in Horizontal Transversely Isotropic Media under Horizontal In Situ Stress. Surv Geophys 44, 387–423 (2023). https://doi.org/10.1007/s10712-022-09739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-022-09739-8

Keywords

Navigation