Mapping of new resistance (Vr2, Rm1) and ornamental (Di2, pl) Mendelian trait loci in peach

Abstract

Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Alexandri AA, Filip I (1977) The behaviour of peach and nectarine cultivars and hybrids to powdery mildew and leaf curl attacks at Murtaflar. An Inst Cercet Prot Plant 323:81–91

    Google Scholar 

  2. Angelov A (1980) The effectiveness of breeding in fruit growing in Bulgaria. Ovoshcharstvo 59(7):12–16

    Google Scholar 

  3. Arús P, Verde I, Sosinski B, Zhebentyayeva T, Abbott AG (2012) The peach genome. Tree Genet Genomes 8:531–547

    Article  Google Scholar 

  4. Beckman TG, Chaparro JX, Sherman WB (2012) Evidence for control of double-flowering in peach via dominant gene loci. Acta Hort 962:139–141

    Article  Google Scholar 

  5. Blake MA (1937) Progress in peach breeding. Proc Am Soc Hort Sci 35:49–53

    Google Scholar 

  6. Chaparro JX, Werner DJ, O’Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological, isozyme and RAPD markers in peach. Theor Appl Genet 87(7):805–815

    CAS  Article  PubMed  Google Scholar 

  7. Dabov S (1974) Inheritance of powdery mildew resistance in peach. I. Resistance of some vegetative organs in freestone varieties. Genet Plant Breed 7:281–291

    Google Scholar 

  8. Dabov S (1975) Inheritance of powdery mildew resistance in peach. II. Resistance of some vegetative organs in F1 from crosses between freestone and clingstone varieties with pubescent fruit skin. Genet Plant Breed 8:267–271

    Google Scholar 

  9. Dabov S (1983) Inheritance of powdery mildew resistance in peach. III. Leaf resistance in F1 of J.H. Hale × Nectarine Ferganensis 2. Genet Plant Breed 8(4):267–271

    Google Scholar 

  10. Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44:783–790

    CAS  Article  PubMed  Google Scholar 

  11. Dirlewanger E, Bodo C (1994) Molecular mapping of peach. Euphytica 77:101–103

    CAS  Article  Google Scholar 

  12. Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach (Prunus persica (L.) Batsch) × Prunus davidiana hybrids. Theor Appl Genet 93:909–919

    CAS  Article  PubMed  Google Scholar 

  13. Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  14. Donoso JM, Picañol R, Serra O, Howad W, Alegre S, Arús P, Eduardo I (2016) Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two interspecific almond 3 peach populations. Mol Breeding 36:16. doi:10.1007/s11032-016-0441-7

    Article  Google Scholar 

  15. Farré A, Lacasa-Benito I, Cistué L, de Jong JH, Romagosa I, Jansen J (2011) Linkage map construction involving a reciprocal translocation. Theor Appl Genet 122:1029–1037

    Article  PubMed  Google Scholar 

  16. Farré A, Cuadrado A, Lacasa-Benito I, Cistué L, Schubert I, Comadran J, Jansen J, Romagosa I (2012) Genetic characterization of a reciprocal translocation in a widely grown barley variety. Mol Breeding 30:1109–1119

    Article  Google Scholar 

  17. Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003a) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breeding 12:33–50

    CAS  Article  Google Scholar 

  18. Foulongne M, Pascal T, Arús P, Kervella J (2003b) The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor Appl Genet 107(2):227–238

    CAS  Article  PubMed  Google Scholar 

  19. Hollender C, Dardick C, Scorza R (2013) Shoot growth orientation in trees is influenced by gravitropic control via a signaling pathway that includes TAC1 and LAZY1 (Abstract only). In: Federation of American Societies for Experimental Biology Conference, vol 12, p 45

  20. Iliev I (1985) Susceptibility of peach varieties to powdery mildew (Sphaerotheca pannosa (Wallroth) Léveillé f sp persicae Woronichin) in the vicinity of the town of Pomorie. Pochvoznamie. Agrokhimiya Rastitelna Zashchita 20(6):66–75

    Google Scholar 

  21. Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176

    Article  Google Scholar 

  22. Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori M, Verde I, Truco MJ, Messeguer R, Battle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Tree Genet Genomes 97:1034–1041

    CAS  Google Scholar 

  23. Kfoury L, Massonié G (1995) Caractéristiques de la résistance du cultivar de pêcher Rubira à Myzus persicae Sulzer. Agronomie 15(5):277–284

    Article  Google Scholar 

  24. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  25. Lambert P, Pascal T (2011) Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar “Rubira®”. Tree Genet Genomes 7:1057–1068

    Article  Google Scholar 

  26. Lammerts WE (1945) The breeding of ornamental edible peaches for mild climates, 1: inheritance of tree and flower characters—I. Inheritance of tree and flower characters. Am J Bot 32:53–61

    Article  Google Scholar 

  27. Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic maps with mapmaker/exp 3.0. Whitehead Institute technical report, 3rd edn. Whitehead Institute, Cambridge

    Google Scholar 

  28. Massonié G, Maison P, Monet R, Grasselly C (1982) Résistance au puceron vert, Myzus persicae Sulzer (Homoptera Aphididae) chez Prunus persica (L.) Batsch et d’autres espèces de Prunus. Agronomie 2(1):63–70

    Article  Google Scholar 

  29. Monet R (1983) Le pêcher. Génétique et physiologie. INRA Actualités scientifiques et agronomiques. Masson, Paris

    Google Scholar 

  30. Monet R, Massonié G (1994) Déterminisme génétique de la résistance au puceron vert (Myzus persicae) chez le pêcher. Résultats complémentaires. Agronomie 2:177–182

    Article  Google Scholar 

  31. Monet R, Bastard Y, Gibault B (1988) Etude génétique du caractère “port pleureur” chez le pêcher. Agronomie 8(2):127–132

    Article  Google Scholar 

  32. Olmstead JW, Lang GA, Grove GG (2001) Inheritance of powdery mildew resistance in sweet cherry. HortScience 34(2):337–340

    Google Scholar 

  33. Oraguzie N, Bellamkonda M, Peace C, Dhingra A, Glaw D, Grove G (2012) Identification of QTLs associated with powdery mildew resistance in sweet cherry. Abstract of presentations from the Annual Conference of the American Society for Horticultural Science, July 30–August 3, 2012, Miami, FL; Supplement to Hortscience 47(9) September 2012, vol 382, p S316

  34. Pacheco I, Eduardo I, Rossini L, Vecchietti A, Bassi D (2009) QTL mapping for peach (Prunus persica (L.) Batsch) resistance to powdery mildew and brown rot (Abstract only). In: Proceedings of the 53rd Italian Society of Agricultural Genetics Annual Congress, Torino, Italy

  35. Pascal T, Pfeiffer G, Kervella J, Lacroze JP, Sauge MH (2002) Inheritance of green peach aphid resistance in the peach cultivar ‘Rubira’®. Plant Breed 121:459–461

    Article  Google Scholar 

  36. Pascal T, Pfeiffer F, Kervella J (2010) Powdery mildew resistance in the peach cultivar Pamirskij 5 is genetically linked with the Gr gene for leaf color. HortScience 45(1):150–152

    Google Scholar 

  37. Paunovic AS, Bokie Z, Braekovie B (1985) Investigations of the susceptibility of peach cvs, clingstone peaches and nectarines to powdery mildew (Sphaerotheca pannosa (Wall) Lev var persicae) in ecologia conditions of Popovo. Polje Jugosl Vocarstvo 19(1–2):131–137

    Google Scholar 

  38. Perez S, Montes S, Mejia C (1993) Analysis of peach gerplasm in Mexico. J Am Soc Hort Sci 118(4):519–524

    Google Scholar 

  39. Perfilyeva SN (1982) Varietal resistance of peach to powdery mildew. Byull Gos Nitkisk Bot Sada 49:53–56

    Google Scholar 

  40. Quarta R, Dettori MT, Verde I, Gentile A, Broda Z (1998) Genetics analysis of agronomic traits and genetic linkage mapping in a BC1 peach population using RFLPs and RAPDs. Acta Hort 465:51–60

    CAS  Article  Google Scholar 

  41. Quarta R, Dettori MT, Sartori Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hort 531:233–241

    Article  Google Scholar 

  42. Rajapakse S, Belthoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1994) Genetic Linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 90:503–510

    Google Scholar 

  43. Rodriguez AJ, Sherman WB (1990) ‘Oro’ peach germplasm. HortScience 25(1):128

    Google Scholar 

  44. Rodriguez AJ, J Jasso, Sherman WB (1990) Evaluation of peach and nectarine germplasm for powdery mildew resistance. Abstracts of contributor papers. XXIII International Horticultural Congress. Firenze (Italy) August 27–September 1, 1990

  45. Salazar JA, Batnini MA, Trifi-Farah N, Ruiz D, Martínez-Gómez Rubio M (2016) Quantitative trait loci (QTLs) identification and the transmission of resistance to powdery mildew in apricot. Euphytica 211:245–254

    CAS  Article  Google Scholar 

  46. Sauge MH, Kervella J, Rahbé Y (1998a) Probing behaviour of the green peach aphid Myzus persicae on resistant Prunus genotypes. Entomol Exp Appl 89:223–232

    Article  Google Scholar 

  47. Sauge MH, Kervella J, Pascal T (1998b) Settling behaviour and reproductive potential of the green peach aphid Myzus persicae on peach varieties and a related wild Prunus. Entomol Exp Appl 89:233–242

    Article  Google Scholar 

  48. Sauge MH, Lacroze JP, Poëssel JL, Pascal T, Kervella J (2002) Induced resistance by Myzus persicae in the peach cultivar “Rubira®”. Entomol Exp Appl 102:29–37

    Article  Google Scholar 

  49. Sauge MH, Mus F, Lacroze JP, Pascal T, Kervella J, Poëssel JL (2006) Effects of previous herbivory in the peach-Myzus persicae system: genotypic variation in induced resistance and induced susceptibility. Oikos 113:305–313

    Article  Google Scholar 

  50. Saunier R (1973) Contribution à l’étude des relations existant entre certains caractères à déterminisme génétique simple chez le Pêcher et la sensibilité à l’oïdium, Sphaerotheca pannosa (Wallr) Lev., des cultivars de cette espèce. Ann Amélior Plantes 23(3):235–244

    Google Scholar 

  51. Shen Z, Confolent C, Lambert P, Poëssel JL, Quilot-Turion B, Yu M, Ma R, Pascal T (2013) Characterization and genetic mapping in peach of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genet Genomes 9:1435–1446

    Article  Google Scholar 

  52. Smykov VK, Ovcharenko GV, Perfilyeva ZN, Shoeferistov EP (1982) Estimation of the peach hybrid resources by its mildew resistance against the infection background (in Russian). Bull Gos Nik Bot Sada 88:74–80

    Google Scholar 

  53. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101:421–428

    CAS  Article  Google Scholar 

  54. Tsukanova ZG, Gatina ES, Sokolova SA (1980) Inheritance of mildew resistance in the peach variety: Ustojchivyj Pozdnyj F2. Soversh Sortimenta Plodov Kultur 1:108–115

    Google Scholar 

  55. Tsukanova ZG, Sokolova SA, Gatina ES, Smykov VK (1982) Inheritance of mildew resistance by peaches (in Russian). Bull Gos Nik Bot Sada 49:72–75

    Google Scholar 

  56. Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592:291–297

    CAS  Article  Google Scholar 

  57. Verde I, Vendramin E, Dettori MT, Quarta R, Wang I, Lecouls AC, Abbot AG (2004) Target SSR development in peach and SSR mapping in a peach BC1 progeny. Acta Hort 663:63–68

    CAS  Article  Google Scholar 

  58. Verde I, Lairia M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbot AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the Prunus persica [L. (Batsch)] P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111:1013–1021

    CAS  Article  PubMed  Google Scholar 

  59. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–494. doi:10.1038/ng.2586

    CAS  Article  PubMed  Google Scholar 

  60. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    CAS  Article  PubMed  Google Scholar 

  61. Weinhold AR (1961) The orchard development of peach powdery mildew. Phytopathology 51:478–481

    Google Scholar 

  62. Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the INRA through the ‘InnovaFruit’ project. The authors would like to thank Stéphane Decroocq (INRA UMR-BFP, Bordeaux) for supplying the SSRLG3_16m46 marker used to map the pl locus and the staff of the Experimental Facilities of ‘Les Pins de L’Amarine’ and ‘Saint Maurice’ (INRA - UGAFL) for their technical contribution to tree management.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thierry Pascal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pascal, T., Aberlenc, R., Confolent, C. et al. Mapping of new resistance (Vr2, Rm1) and ornamental (Di2, pl) Mendelian trait loci in peach. Euphytica 213, 132 (2017). https://doi.org/10.1007/s10681-017-1921-5

Download citation

Keywords

  • Powdery mildew
  • Green peach aphid
  • Double-flower
  • Weeping-growth habit
  • SSR
  • Pseudo-linkage