Skip to main content
Log in

Genomic regions conferring resistance to rust diseases of wheat in a W195/BTSS mapping population

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Global wheat production is constrained by rust diseases and deployment of combinations of genetically diverse sources of resistance in new cultivars is accepted as a preferred means of rust control. This investigation was planned to identify new genomic regions contributing towards resistance to three rust diseases under field conditions in a W195/BT-Schomburgk Selection (BTSS) RIL population. The RIL population was assessed for variation in stripe rust, leaf rust and stem rust responses at two locations during 2012 and 2013 crop seasons and was subjected to DArTseq genotyping. Linkage map was constructed using 3439 DArTseq markers with an average marker density of 2.7 cM. Composite interval mapping detected three QTL each for stripe rust, leaf rust and stem rust resistance in W195/BTSS RIL population. Two consistent QTL for stripe rust, QYr.sun-3BS and QYr.sun-4DL, were contributed by W195 and one inconsistent QTL, QYr.sun-7AS, by BTSS. In the case of leaf rust QLr.sun-2BS and QLr.sun-3BS were contributed by BTSS and QLr.sun-4DL by W195. Based on seedling tests, QLr.sun-2BS was demonstrated to be Lr23. BTSS carried stem rust QTL; QSr.sun-2BL and QSr.sun-6AS and QSr.sun-4DL was contributed by W195. QSr.sun-6AS corresponded to stem rust resistance gene Sr8a carried by BTSS. The collocated QTL for all three rust diseases in chromosome 4D corresponded to the plieotropic locus Lr67/Yr46/Sr55/Pm46 based on genotyping with a linked SNP marker. Interaction among QTL to condition lower rust responses was also demonstrated. QYr.sun-3BS, QLr.sun-3BS and QSr.sun-2BL represent new rust resistance loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Bansal UK, Hayden MJ, Venkata BP, Khanna R, Saini RG, Bariana HS (2008) Genetic mapping of adult plant leaf rust resistance genes Lr48 and Lr49 in common wheat. Theor Appl Genet 117:307–312

    Article  CAS  PubMed  Google Scholar 

  • Bansal UK, Hayden MJ, Gill MB, Bariana HS (2010) Chromosomal location of an uncharacterised stripe rust resistance gene in wheat. Euphytica 171:121–127

    Article  Google Scholar 

  • Bansal UK, Kazi AG, Singh B, Hare RA, Bariana HS (2014) Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol Breeding 33:51–59

    Article  CAS  Google Scholar 

  • Bariana HS, Brown GN, Bansal UK, Miah H, Standen GE, Lu M (2007a) Breeding for triple rust resistance wheat cultivars for Australia using conventional and marker assisted selection technologies. Aust J Agric Res 58:576–587

    Article  Google Scholar 

  • Bariana HS, Miah H, Brown GN, Willey N, Lehmensiek A (2007b) Molecular mapping of durable rust resistance in wheat and its implication in breeding. In: Buck HT, Nisi JE, SalomÓn N (eds) Wheat production in stressed environments. Developments in plant breeding, vol 12. Springer, Berlin, pp 723–728

    Chapter  Google Scholar 

  • Bariana HS, Bansal UK, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, McIntyre CL (2010) Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176:251–260

    Article  CAS  Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparitive QTL studies. In: Proceedings of the 49th annual corn & sorghum industry research conference. American Seed Trade Association, Washington, DC, pp 250–266

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162

    Google Scholar 

  • Börner A, Röder MS, Unger O, Meinel A (2000) The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet 100:1095–1099

    Article  Google Scholar 

  • Boshoff WHP, Pretorius ZA, van Niekerk BD (2002) Establishment, distribution and pathogenicity of Puccinia striiformis f. sp tritici in South Africa. Plant Dis 86:485–492

    Article  Google Scholar 

  • Brennan JP, Murray GM (1988) Australian wheat diseases—assessing their economic importance. Agric Sci New Ser 1(7):26–35

    Google Scholar 

  • Chen XM, Penman L, Wan AM, Cheng P (2010) Virulence races of Puccinia striiformis f. sp tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol 32:315–333

    Article  Google Scholar 

  • Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Negre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology 99:968–973

    Article  CAS  PubMed  Google Scholar 

  • Diéguez MJ, Pergolesi MF, Velasquez SM, Ingala L, López M, Darino M, Paux E, Feuillet C, Sacco F (2014) Fine mapping of LrSV2, a race-specific adult plant leaf rust resistance gene on wheat chromosome 3BS. Theor Appl Genet 127:1133–1141

    Article  PubMed  Google Scholar 

  • Forrest K, Pujol V, Bulli P, Pumphery M, Wellings C, Herrera-Foessel S, Huerta-Espino J, Singh R, Laguadah E, Hayden M, Speilmeyer W (2014) Development of a SNP marker assay for the Lr67 gene of wheat using a genotyping by sequencing approach. Mol Breeding 34:2109–2118

    Article  CAS  Google Scholar 

  • Hao Y, Chen Z, Wang Y, Bland D, Buck J, Brown-Guedira G, Johnson J (2011) Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor Appl Genet 123:1401–1411

    Article  PubMed  Google Scholar 

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Article  PubMed  Google Scholar 

  • Hodson DP (2011) Shifting boundaries: challenges for rust monitoring. Euphytica 179:93–104

    Article  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:E25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khlestkina EK, Roder MS, Unger O, Meinel A, Börner A (2007) More precise map position and origin of a durable non-specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Euphytica 153:1–10

    Article  Google Scholar 

  • Klindworth DL, Niu Z, Chao S, Friesen TL, Jin Y, Faris JD, Cai X, Xu SS (2012) Introgression and characterization of a goatgrass gene for a high level of resistance to Ug99 stem rust in tetraploid wheat. G3 2:665–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott D, Anderson R (1956) The inheritance of rust resistance. I. The inheritance of stem rust resistance in ten varieties of common wheat. Can J Agric Sci 36:174–195

    Google Scholar 

  • Kosambi D (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lan C, Rosewarne G, Singh R, Herrera-Foessel S, Huerta-Espino J, Basnet B, Zhang Y, Yang E (2014) QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1. Mol Breed 34:789–803

    Article  CAS  Google Scholar 

  • Li Z, Lan C, He Z, Singh RP, Rosewarne GM, Chen X, Xia X (2014) Overview and Application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci 54:1907–1925

    Article  Google Scholar 

  • Lowe I, Jankuloski L, Chao SM, Chen XM, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123:143–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, McCallum BD, Thomas JG, Humphreys DG, Menzies JG, Brown PD (2005) Microsatellite tagging of the leaf rust resistance gene Lr16 on wheat chromosome 2BS. Mol Breed 15:329–337

    Article  CAS  Google Scholar 

  • McIntosh RA, Dyck PL (1975) Cytogenetical studies in wheat. VII* Gene Lr23 for reaction to Puccinia recondita in Gabo and related cultivars. Aust J BioI Sci 28:201–211

    Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: An atlas of resistance genes. CSIRO Publishing, Melbourne 199

    Book  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers W, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. In: Proceedings of the 12th international wheat genetics symposium, Yokohama, Japan

  • Messmer MM, Seyfarth R, Keller M, Schachermayr G, Winzeler M, Zanetti S, Feuillet C, Keller B (2000) Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet 100:419–431

    Article  CAS  Google Scholar 

  • Milus EA, Kristensen K, Hovmoller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94

    Article  PubMed  Google Scholar 

  • Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Aust Plant Pathol 38:558–570

    Article  Google Scholar 

  • Pretorius ZA, Pakendorf KW, Marais GF, Prins R, Komen JS (2007) Challenges for sustainable cereal rust control in South Africa. Aust J Agr Res 58:593–601

    Article  Google Scholar 

  • Randhawa M, Bariana H, Mago R, Bansal U (2015) Mapping of a new stripe rust resistance locus Yr57 on chromosome 3BS of wheat. Mol Breeding 35:1–8

    Article  CAS  Google Scholar 

  • Ren Q, Liu HJ, Zhang ZY, Feng J, Xu SC, Pu ZJ, Xin ZY (2012) Characterization and molecular mapping of a stripe rust resistance gene in synthetic wheat CI110. J Integr Agr 11:521–527

    Article  CAS  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet x Pastor wheat population. Theor Appl Genet 124:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126:2427–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99:554–560

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, McIntosh RA (1986) Cytogenetical studies in wheat. XIV. Sr8b for resistance to Puccinia graminis tritici. Can J Genet Cytol 28:189–197

    Article  Google Scholar 

  • Vazquez MD, Peterson CJ, Riera-Lizarazu O, Chen XM, Heesacker A, Ammar K, Crossa J, Mundt CC (2012) Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials. Theor Appl Genet 124:1–11

    Article  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Departmentf Statistics, North Caolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/QTLCart.htm

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:786–796

    Google Scholar 

  • William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977–990

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1968) Evolution and genetics of populations. Genetics and Biometric Foundations, University of Chicago Press, Chicago

    Google Scholar 

  • Yang J, Li C, Gong X, Gupta S, Lance R, Zhang G, Loughman R, Zhu J (2011) Large mapping population with low marker density verse small population with high marker density for QTL mapping: A case study for mapping QTL controlling barley net blotch resistance. In: Zhang G, Li C, Liu (eds) Proceedings of the 11th International Barley Genetics symposium. Springer, Zhejiang University Press, pp 301–326

  • Yang EN, Rosewarne GM, Herrera-Foessel SA, Huerta-Espino J, Tang ZX, Sun CF, Ren ZL, Singh RP (2013) QTL analysis of the spring wheat “Chapio” identifies stable stripe rust resistance despite inter-continental genotype x environment interactions. Theor Appl Genet 126:1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Yu L-X, Barbier H, Rouse M, Singh S, Singh R, Bhavani S, Huerta-Espino J, Sorrells M (2014) A consensus map for Ug99 stem rust resistance loci in wheat. Theor Appl Genet 127:1561–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Feng J, Zhang CY, Xu XD, Chen XM, Sun Q, Miao Q, Xu SC, Lin F (2012) The dissection and SSR mapping of a high-temperature adult-plant stripe rust resistance gene in American spring wheat cultivar Alturas. Eur J Plant Pathol 134:281–288

    Article  Google Scholar 

Download references

Acknowledgments

First author thanks the Australian Government for the Australian Leadership Award Fellowship to pursue PhD studies at the University of Sydney and also acknowledges the Ministry of Agriculture and Forestry (MoAF), Bhutan for granting study leave. Financial support from the University of Sydney and the GRDC Australia is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harbans Bariana.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhetri, M., Bansal, U., Toor, A. et al. Genomic regions conferring resistance to rust diseases of wheat in a W195/BTSS mapping population. Euphytica 209, 637–649 (2016). https://doi.org/10.1007/s10681-016-1640-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1640-3

Keywords

Navigation