Skip to main content
Log in

The dissection and SSR mapping of a high-temperature adult-plant stripe rust resistance gene in American spring wheat cultivar Alturas

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Stripe rust is one of major diseases in wheat production worldwide. The best economic and efficient method is to utilize resistant varieties. Alturas has high-temperature adult-plant resistance. In order to determine stripe rust resistance characteristics, resistance gene combination and molecular map of the resistance gene(s), Alturas was crossed with Chinese susceptible cultivar Taichung29. The parents, F1, F2 progenies were tested with Chinese predominant mixed races CYR31, CYR32 and CYR33 in field experiments in 2010 and F3 progenies were evaluated at one site in Beijing, the other site in Langfang, Hebei Province. Infection type (IT) and disease severity (DS) were recorded three times for each plant for F1 and F2, and each progeny for F3 during each growing season. The DS data were used to calculate relative area under the disease progress curve (AUDPC) values. Both IT and AUDPC data showed continuous distributions, indicating that the Alturas HTAP resistance was controlled by quantitative trait loci (QTLs). A major HTAP QTL, designated as QYrAlt.syau-3BS, was consistently detected across environments and was located on chromosome 3BS. The gene contributed to 34.28 % of the phenotypic variation for average AUDPC and 50.20 % for average IT. Markers Xgwm389 and Xbarc238 flanking the major QTL, should be useful in breeding for obtaining durable and high-level resistance by combinations with other non-race-specific resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bai, Y. L., Lin, F., Sun, Q., Zhang, C. Y., Cui, N., Xu, S. C., Gao, Y., & Xu, X. D. (2010). Molecular screening and resistance evaluation of American wheat cultivars to Chinese stripe rust races. Agricultural Sciences in China, 9(10), 101–105.

    Article  Google Scholar 

  • Bansal, U. K., Hayden, M. J., & Bariana, H. S. (2010). Chromosomal location of an uncharacterized stripe rust resistance gene in wheat. Euphytica, 171, 121–127.

    Article  Google Scholar 

  • Bröers, A., Bröers, M. S., Unger, O., & Meinel, A. (2000). The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theoretical and Applied Genetics, 100, 1095–1099.

    Article  Google Scholar 

  • Chen, X. M. (2005). Epidemiology and control of stripe rust on wheat. Canadian Journal of Plant Pathology, 27, 314–337.

    Article  Google Scholar 

  • Chen, X. M., & Line, R. F. (1995a). Gene action in wheat cultivars for durable high temperature adult-plant resistance and interactions with race-specific, seedling resistance to stripe rust caused by Puccinia striiformis. Phytopathology, 85, 567–572.

    Article  Google Scholar 

  • Chen, X. M., & Line, R. F. (1995b). Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant resistance and race-specific resistance to Puccinia striiformis. Phytopathology, 85, 573–578.

    Article  Google Scholar 

  • Hau, B., & Vallavieille-Pope, C. (1998). Case study: wind-dispersed diseases. In D. G. Jones (Ed.), The epidemiology of plant diseases (pp. 323–347). Boston: Kluwer Academic Publishers.

    Google Scholar 

  • He, Z. Z., Wang, L. M., & Zhang, Z. Y. (2007). Identification and molecular mapping of a novel stripe rust resistance gene in a Triticum durum-Aegilops tauschii Amphiploid CI108 (in China ). Acta Agronomica Sinica, 33(7), 1045–1050.

    CAS  Google Scholar 

  • Khlestkina, E. K., Röder, M. S., Unger, O., Meinel, A., & Börner, A. (2007). More precise map position and origin of a durable non-specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Euphytica, 153, 1–10.

    Article  Google Scholar 

  • Kosambi, D. D. (1944). The estimation of map distances from recombination values. Annals of Eugenics, 12, 172–175.

    Google Scholar 

  • Lin, F., & Chen, X. M. (2007). Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theoretical and Applied Genetics, 114, 1277–1287.

    Article  PubMed  CAS  Google Scholar 

  • Lin, F., & Chen, X. M. (2009). Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theoretical and Applied Genetics, 118, 631–642.

    Article  PubMed  CAS  Google Scholar 

  • Line, R. F., & Qayoum, A. (1985). High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology, 75(10), 1121–1125.

    Article  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Xia XC (2010) Catalogue of gene symbols for wheat: 2010 Supplement [online]. http://wheat.pw.usda.gov/ggpages/awn/56/Textfiles/WGC.pdf. Accessed 2 Mar 2011

  • Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulk segregant analysis. A rapid method to detect markers in specific genomic regions by using segregating population. Proceedings of the National Academy of Sciences, 88, 9828–9832.

    Article  CAS  Google Scholar 

  • Milus, E. A., & Line, R. F. (1986a). Number of genes controlling high-temperature, adult-plant resistance to stripe rust in wheat. Phytopathology, 76, 93–96.

    Article  Google Scholar 

  • Milus, E. A., & Line, R. F. (1986b). Gene action for inheritance of durable, high-temperature, adult-plant resistance to stripe rust in wheat. Phytopathology, 76, 435–441.

    Article  Google Scholar 

  • Paux, E., Sourdille, P., Salse, J., Saintenec, C., Choulet, F., Leroy, P., Korol, A., Michalak, M., Kianian, S., Spielmeyer, W., Lagudah, E., Somers, D., Kilian, A., Alaux, M., Vautrin, S., Berges, H., Eversole, K., Appels, R., Safar, J., Simkova, H., Dolezel, J., Bernard, M., & Feuillet, C. (2008). A physical map of the 1-gigabase bread wheat chromosome 3B. Science, 322, 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Röder, M. S., Korzun, V., Wendehake, K., & Plaschke, J. (1998). A microeatcllite map of wheat. Genetics, 149, 2007–2023.

    PubMed  Google Scholar 

  • Saari, E. E., & Prescott, J. M. (1985). World distribution in relation to economic losses. In A. P. Roelfs & W. R. Bushnell (Eds.), The cereal rusts, Vol. 2 Diseases, distribution, epidemiology, and control (pp. 260–298). Orlando: Academic Press.

    Google Scholar 

  • Sharp, P. G., Kreis, M., Shewry, P. R., & Gale, M. D. (1988). Resistance to Puccinia recondite tritici in synthetic hexaploid wheats. Indian Journal of Genetics, 58, 263–269.

    Google Scholar 

  • Singh, R. P., Nelson, J. C., & Sorrells, M. E. (2000). Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science, 40, 1148–1155.

    Article  CAS  Google Scholar 

  • Souza, E. J., Guttieri, M. J., & O’Brien, K. (2004). Registration of Alturas wheat. Crop Science, 44(4), 1477–1478.

    Article  Google Scholar 

  • Wan, A. M., Zhao, Z. H., & Chen, X. M. (2004). Wheat stripe rust epidemic and virulence of Puccinia striiform f.sp. tritici in China in 2002. Plant Disease, 88, 896–904.

    Article  Google Scholar 

  • Yang, Z. M., Xie, C. J., & Sun, Q. X. (2003). Situation of the sources of stripe rust resistance of wheat in the post-CY32 era in China. Acta Agronomica Sinica, 29, 161–168.

    Google Scholar 

  • Yang, J., Bai, G., & Shaner, G. E. (2005). Novel quantitative trait loci (QTL) for Fusarium head blight resistance in wheat cultivar Chokwang. Theoretical and Applied Genetics, 111, 1571–1579.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by National Natural Science Foundation of China (30971778), Open Fund Project of State Key Laboratory for Biology of Plant Diseases and Insect Pests (SKL2010OP06), and Scientific and technological innovation and Environmental construction project (F11-265-6-09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Chang Xu or Feng Lin.

Additional information

Lei Zhao and Jing Feng These authors contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Feng, J., Zhang, CY. et al. The dissection and SSR mapping of a high-temperature adult-plant stripe rust resistance gene in American spring wheat cultivar Alturas. Eur J Plant Pathol 134, 281–288 (2012). https://doi.org/10.1007/s10658-012-9987-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-9987-3

Keywords

Navigation