Skip to main content

Assessing the agronomic potential of linseed genotypes by multivariate analyses and association mapping of agronomic traits

Abstract

High prices of fish oil make linseed attractive for aquaculture and animal feed. To ensure a constant supply of linseed, the development of stable cultivars is of strategic importance. In this study, 35 linseed genotypes were evaluated in five Chilean environments (E) from 2009 to 2012. The additive main effect and multiplicative interaction analysis (AMMI), genotype (G) plus genotype by environment (GE) interaction (GGE) biplot analysis and three stability parameters were tested with the aim of identifying adapted genotypes for the development of linseed cultivars. An association mapping (AM) analysis was also conducted for four agronomic traits and the stability of the associated markers was evaluated using the QQE (QTL main effect and QTL by environment interaction) approach. Combined analysis of variance for yield, seeds per boll (SPB), plant height (PH) and days to flowering (DTF) were significant for G, E and GE (P < 0.001). The combined stability analysis identified some Canadian, Argentinean and Chilean accessions to be the best adapted and highest yielding genotypes. Coancestry analysis indicated that crossing Canadian and Chilean genotypes could maximize transgressive segregation for yield. Significant associations for DTF, PH and SPB explained up to 59 % of the phenotypic variation for these traits. The QQE and AM analyses were consistent in identifying marker LGM27B as the most stable and significant across all environments with the largest effect in reducing DTF. The combined application of the stability, AM and QQE analyses could accelerate the development of marketable linseed cultivars adapted to Southern Chile.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adugna W, Labuschagne MT (2003) Association of linseed characters and its variability in different environments. J Agric Sci 140:285–296

    CAS  Article  Google Scholar 

  2. Annicchiarico P (1997) Joint regression versus AMMI analysis of genotype–environment interactions for cereals in Italy. Euphytica 94:53–62

    Article  Google Scholar 

  3. Balcázar-Muñoz BR, Martínez-Abundis E, González-Ortiz M (2003) Efecto de la administración oral de inulina sobre el perfil de lípidos y la sensibilidad a la insulina en individuos con obesidad y dislipidemia. Rev Med Chile 131:597–604

    PubMed  Google Scholar 

  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  5. Berti M, Fischer S, Wilckens R, Hevia F (2009) Flaxseed response to N, P, and K fertilization in South Central Chile. Chil J Agric Res 69:145–153

    Article  Google Scholar 

  6. Berti M, Fisher S, Wilckens R, Hevia F, Johnson B (2010) Adaptation and genotype x environment interaction of flaxseed (Linum usitatissimum L.) genotypes in South Central Chile. Chil J Agric Res 70:345–356

    Article  Google Scholar 

  7. Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6:e1000940

    PubMed Central  PubMed  Article  Google Scholar 

  8. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Article  Google Scholar 

  9. Breseghello F, Sorrells M (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    PubMed  Article  Google Scholar 

  10. Caballero A, Toro MA (2002) Analysis of genetic diversity for the management of conserved subdivided populations. Conserv Genet 3:289–299

    CAS  Article  Google Scholar 

  11. Casa R, Russell G, Lo Cascio B, Rossini F (1999) Environmental effects on linseed (Linum usitatissimum L.) yield and growth of flax at different stand densities. Eur J Agron 11:267–278

    Article  Google Scholar 

  12. CIREN (2002) Descripciones de suelos, materiales y símbolos. Estudio agrológico IX Región. Publicación No 122. Centro de Información de Recursos Naturales (CIREN), Santiago, p 360

  13. Cloutier S, Niu Z, Datla R, Duguid S (2009) Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor Appl Genet 119:53–63

    CAS  PubMed  Article  Google Scholar 

  14. Cloutier S, Ragupathy R, Niu Z, Duguid S (2011) SSR-based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits. Mol Breed 28:437–451

    CAS  Article  Google Scholar 

  15. Cloutier S, Miranda E, Ward K, Radovanovic N, Reimer E, Walichnowski A, Datla R, Rowland G, Duguid S, Ragupathy R (2012a) Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.). Theor Appl Genet 125:685–694

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Cloutier S, Ragupathy R, Miranda E, Radovanovic N, Reimer E, Walichnowski A, Ward K, Rowland G, Duguid S, Banik M (2012b) Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.). Theor Appl Genet 125:1783–1795

    PubMed Central  PubMed  Article  Google Scholar 

  17. Delhaize E, Ma JF, Ryan PR (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17:341–348

    CAS  PubMed  Article  Google Scholar 

  18. Deng X, Long S, He D, Li X, Wang Y, Liu J, Chen X (2010) Development and characterization of polymorphic microsatellite markers in Linum usitatissimum. J Plant Res 123:119–123

    CAS  PubMed  Article  Google Scholar 

  19. Diederichsen A (2007) Ex situ collections of cultivated flax (Linum usitatissimum L.) and other species of the genus Linum L. Genet Resour Crop Evol 54:661–678

    Article  Google Scholar 

  20. Diederichsen A, Raney JP, Duguid SD (2006) Variation of mucilage in flax seed and its relationship with other seed characters. Crop Sci 46:365–371

    Article  Google Scholar 

  21. Diederichsen A, Kusters PM, Kessler D, Bainas Z, Gugel RK (2013) Assembling a core collection from the flax world collection maintained by plant gene resources of Canada. Genet Resour Crop Evol 60:1479–1485

    Article  Google Scholar 

  22. Ersoz ES, Yu J, Buckler ES (2009) Applications of linkage disequilibrium and association mapping in maize. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Springer, Berlin, pp 173–195

    Chapter  Google Scholar 

  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Article  Google Scholar 

  24. FAOSTAT (2013) Production of crops: linseed: area harvested/yield and production (tonnes). Available at http://faostat3.fao.org/home/index.html. Accessed March 2013

  25. Fu YB, Rowland GG, Duguid SD, Richards K (2003) RAPD analysis of 54 North American flax cultivars. Crop Sci 43:1510–1515

    Article  Google Scholar 

  26. Gallardo F, Borie F, Alvear L, Baer EV (1999) Evaluation of aluminium tolerance of three barley cultivars by two short-term screening methods and field experiments. Soil Sci Plant Nutr 45:713–719

    CAS  Article  Google Scholar 

  27. Gauch HG (1992) AMMI analysis of yield trials. In: Kang MS, Gauch HG (eds) Genotype-by-environment interaction. CRC Press, Boca Raton, pp 1–40

    Google Scholar 

  28. Gauch HG, Zobel RW (1997) Identifying mega-environment and targeting genotypes. Crop Sci 37:311–326

    Article  Google Scholar 

  29. Gauch HG, Piepho HP, Annicchiarico P (2008) Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Sci 48:866–889

    Article  Google Scholar 

  30. Grossniklaus U, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist S (2013) Transgenerational epigenetic inheritance: How important is it? Nat Rev Genet 14:228–235

    CAS  PubMed  Article  Google Scholar 

  31. Gutiérrez JP, Royo LJ, Álvarez I, Goyache F (2005) MolKin v2.0: a computer program for genetic analysis of populations using molecular coancestry information. J Hered 96:718–721

    PubMed  Article  Google Scholar 

  32. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  33. Harris, DR (1997) The spread of neolithic agriculture from the Levant to Western-Central Asia. In: Damania AB,Valkoun J, Willcox G, Qualset CO (eds) The origin of agriculture and crop domestication. In: Proceedings of Harlan Symposium, ICARDA, Aleppo, Syria, May 10–14, pp 65–82

  34. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    PubMed Central  PubMed  Article  Google Scholar 

  35. Jarillo JA, Piñeiro M (2011) Timing is everything in plant development. The central role of floral repressors. Plant Sci 181:364–378

    CAS  PubMed  Article  Google Scholar 

  36. Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    CAS  PubMed  Article  Google Scholar 

  37. King GJ, Amoah S, Kurup S (2010) Exploring and exploiting epigenetic variation in crops. Genome 53:856–868

    CAS  PubMed  Article  Google Scholar 

  38. Kozlowska J, Muñoz GA, Kolodziejczyk PP (2008) Food and feed application for flaxseed components. In: Proceedings of the 2008 international conference on flax and other bast plants, Saskatoon, SK, pp 299

  39. Kumar S, You FM, Cloutier S (2012) Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genomics 13:684

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. Lukens LN, Zhan S (2007) The plant genomes methylation status and response to stress: implications for plant improvement. Curr Opin Plant Biol 10:317–322

    CAS  PubMed  Article  Google Scholar 

  41. Mohammadi R, Amri A (2013) Genotype × environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica 192:227–249

    CAS  Article  Google Scholar 

  42. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Bukler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. Oh TJ, Gorman M, Cullis CA (2000) RFLP and RAPD mapping in flax (L. usitatissimum). Theor Appl Genet 101:590–593

    CAS  Article  Google Scholar 

  44. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  45. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. Purchase JL (1997) Parametric analysis to describe G × E interaction and yield stability in winter wheat. Dissertation, University of the Orange Free State

  47. Ragupathy R, Rathinavelu R, Cloutier S (2011) Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genomics 12:217

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. Rahimi MM, Zarei MA, Arminian A (2011) Selection criteria of flax (Linum usitatissimum L.) for seed yield, yield components and biochemical compositions under various planting dates and nitrogen. Afr J Agric Res 6:3167–3175

    Google Scholar 

  49. Roose-Amsaleg C, Cariou-Pham E, Vautrin D, Tavernier R, Solignac M (2006) Polymorphic microsatellite loci in Linum usitatissimum. Mol Ecol Notes 6:796–799

    CAS  Article  Google Scholar 

  50. Rowland GG, Hormis YA, Rashid KY (2002) CDC Bethune flax. Can J Plant Sci 82:101–102

    Article  Google Scholar 

  51. Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    CAS  PubMed  Article  Google Scholar 

  52. Smýkal P, Bačová-Kerteszová N, Kalendar R, Corander J, Schulman AH, Pavelek M (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotrasnsposon-based markers. Theor Appl Genet 122:1385–1397

    PubMed  Article  Google Scholar 

  53. Soto-Cerda BJ, Cloutier S (2012) Association mapping in plant genomes. In: Caliskan M (ed) Genetic diversity in plants. InTech, Rijeka, pp 29–54

    Google Scholar 

  54. Soto-Cerda BJ, Carrasco RA, Aravena GA, Urbina HA, Navarro CS (2011a) Identifying novel polymorphic microsatellites from cultivated flax (Linum usitatissimum L.) following data mining. Plant Mol Biol Rep 29:753–759

    Article  Google Scholar 

  55. Soto-Cerda BJ, Urbina Saavedra H, Navarro Navarro C, Mora Ortega P (2011b) Characterization of novel genic SSR markers in Linum usitatissimum (L.) and their transferability across eleven Linum species. Electron J Biotechnol. doi:10.2225/vol14-issue2-fulltext-6

    Google Scholar 

  56. Soto-Cerda BJ, Maureira-Butler I, Muñoz G, Rupayan A, Cloutier S (2012) SSR-based population structure, molecular diversity and linkage disequilibrium analysis of a collection of flax (Linum usitatissimum L.) varying for mucilage seed-coat content. Mol Breed 30:875–888

    Article  Google Scholar 

  57. Soto-Cerda BJ, Diederichsen A, Ragupathy R, Cloutier S (2013) Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BMC Plant Biol 13:78

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  58. Spielmeyer W, Green AG, Bittisnich D, Mendham N, Lagudah ES (1998) Identification of quantitative trait loci contributing to Fusarium wilt resistance on an AFLP linkage map of flax (Linum usitatissimum). Theor Appl Genet 97:633–641

    CAS  Article  Google Scholar 

  59. Springer NM (2012) Epigenetics and crop improvement. Trends Genet. doi:10.1016/j.tig.2012.10.009

    PubMed  Google Scholar 

  60. StatSoft, Inc (2007) Electronic statistics textbook [online]. StatSoft, Tulsa, Okla. Available from www.statsoft.com/textbook/stathome.html. Accessed June 2013

  61. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    CAS  PubMed  Article  Google Scholar 

  62. St-Pierre CA, Klinck HR, Gauthier FM (1967) Early generation selection under different environments as it influences adaptation of barley. Can J Plant Sci 47:507–517

    Article  Google Scholar 

  63. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    CAS  PubMed  Article  Google Scholar 

  64. The EPIC Planning Committee (2012) Reading the second code: mapping epigenomes to understand plant growth, development, and adaptation to the environment. Plant Cell 24:2257–2261

    PubMed Central  Article  Google Scholar 

  65. van der Merwe R, Labuschagne MT, Herselman L, Hugo A (2013) Stability of seed oil quality traits in high and mid-oleic acid sunflower hybrids. Euphytica. doi:10.1007/s10681-013-0888-0

    Google Scholar 

  66. VSN International (2011) GenStat for windows 14th edn. VSN International, Hemel Hempstead. http://www.GenStat.co.uk

  67. Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa CJ, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe AG, Wong GK, Wang J, Deyholos MK (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473

    PubMed  Article  Google Scholar 

  68. Xiao-Jun L, Xin X, Wei-Hua L, Xiu-Quan L, Xin-Ming Y, Li-Hui L (2009) Genetic contribution of introduced varieties to wheat breeding in China evaluated using microsatellite markers. Acta Agron Sin 35:778–785

    Google Scholar 

  69. Yan W (2001) GGEbiplot—a windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron J 93:1111–1118

    Article  Google Scholar 

  70. Yan W, Kang MS (2003) GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton

    Google Scholar 

  71. Yan W, Tinker NA (2005) A biplot approach for investigating QTL-by-environment patterns. Mol Breed 15:31–43

    Article  Google Scholar 

  72. Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci 40:597–605

    Article  Google Scholar 

  73. Yu J, Pressoir G, Briggs W, Vroh Bi I, Yamasaki M, Doebley J, McMullen M, Gaut B, Nielsen D, Holland J, Kresovich S, Buckler E (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    CAS  PubMed  Article  Google Scholar 

  74. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    PubMed  Article  Google Scholar 

  75. Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA 109:21534–21539

    CAS  PubMed  Article  Google Scholar 

  76. Zobel RW, Wright MJ, Gauch HG (1988) Statistical analysis of a yield trial. Agron J 80:388–393

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Héctor Pauchard for supplying the meteorological data and Dana Kowal for the help in the preparation of figures. We acknowledge INIA and Monica Gebert for their support providing experimental fields. This work was supported by the Agriaquaculture Nutritional Genomic Center (CGNA). Braulio Soto-Cerda was supported by Becas Chile—Comisión Nacional de Investigación Científica y Tecnológica (CONICYT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sylvie Cloutier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1,360 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soto-Cerda, B.J., Westermeyer, F., Iñiguez-Luy, F. et al. Assessing the agronomic potential of linseed genotypes by multivariate analyses and association mapping of agronomic traits. Euphytica 196, 35–49 (2014). https://doi.org/10.1007/s10681-013-1012-1

Download citation

Keywords

  • Multivariate analysis
  • Association mapping
  • GE interaction
  • Linseed
  • QQE analysis
  • Stability