Skip to main content
Log in

Elite durum wheat genetic map and recombination rate variation in a multiparental connected design

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genetic maps published for elite durum wheat (Triticum turgidum durum Desf.), were mainly related to Italian and North American pools. To provide additional information dedicated to durum elite pool, a recombinant inbred population (217 RILs) derived form 2 French commercial varieties (Ixos and Primadur), has been mapped with 529 loci (98 AFLPs, 67 SSRs, 1 ISBP and 363 DArTs). Genetic map spanned a total of 2,082 cM (5.7 cM/marker on average). Recombination rate variation over the genome was documented through the analysis of six segregating populations representing a total of 48 RILs × 6, issued from an half diallel design based on four elite lines—Neodur, Ixos, Lloyd and Primadur—including the 2 previous genitors. Each set of three genetically connected populations (48 RILs × 3) was used to build the consensus parental maps for each genitor. To construct the four consensus parental maps, marker ordering was determined on 217 RILs map which was an extended population of the most polymorphic cross (Ixos × Primadur). Sizeable, recombination rate variation has been observed between the four parental maps both at the marker pair scale and at the linkage group scale. Two of the parents, Lloyd and Primadur, had strong, opposite effects increasing and decreasing, respectively the recombination rate. Additional studies are proposed to increase our understanding of this variation, with the identification of environmental or genetic factors affecting recombination rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Able JA, Langridge P, Milligan AS (2007) Capturing diversity in the cereals: many options but little promiscuity. Trends Plant Sci 12(2):71–79

    Article  PubMed  CAS  Google Scholar 

  • Akbari M, Wenzl P, Caig V et al (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Akhunov E, Goodyear A, Geng S, Qi L, Echalier B (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    Article  PubMed  CAS  Google Scholar 

  • Blanco A, Bellomo M, Cenci A et al (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    Article  CAS  Google Scholar 

  • Chalmers K, Cambell A, Kretschmer J et al (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Biol Sci 52:1089–1119

    CAS  Google Scholar 

  • Chu C, Chao S, Friesen T, Faris J, Zhong S, Xu S (2010) Identification of novel tan spot resistance QTLs using an SSR-based linkage map of tetraploid wheat. Mol Breed 25:327–338

    Article  CAS  Google Scholar 

  • De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  Google Scholar 

  • Doligez A, Adam-Blondon A, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith C, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382

    Article  PubMed  CAS  Google Scholar 

  • Drouaud J, Mercier R, Chelysheva L, Bérard A, Falque M, Martin O, Zanni V, Brunel D, Mézard C (2007) Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4. PLoS Genet 3:1096–1107

    Article  CAS  Google Scholar 

  • Elouafi I, Nachit M (2004) A genetic linkage map of the Durum × Triticum dicoccoides backcross population based on SSRs and AFLP markers and QTL analysis for milling traits. Theor Appl Genet 108:401–413

    Article  PubMed  CAS  Google Scholar 

  • Foolad M, Arulsekar S, Becerra V, Bliss F (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet 91:262–269

    Article  CAS  Google Scholar 

  • Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Mangini G, Simeone R, Signorile A, Blanco A (2009) Genetic and physical mapping of new EST-derived SSRs on the A and B genome chromosomes of wheat. Theor Appl Genet 118:1015–1025

    Article  PubMed  CAS  Google Scholar 

  • Graffelman J, Balding D, Gonzalez-Neira A, Bertranpetit J (2007) Variation in estimated recombination rates across human populations. Hum Genet 122:301–310

    Article  PubMed  Google Scholar 

  • Griffing B (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9:463–493

    Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ et al (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744

    Article  PubMed  Google Scholar 

  • Haudry A, Cenci A, Ravel C et al (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    Article  PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Jain HK (1957) Effect of high temperature on meiosis in Lolium: nucleolar inactivation. Heredity 11:23–36

    Article  Google Scholar 

  • Korzun V, Röder MS, Wendekake K, Pasqualone A, Lotti C, Ganal MW, Blanco A (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202–1207

    Article  CAS  Google Scholar 

  • Leflon M, Grandon L, Eber F, Huteau V, Coriton O, Chelysheva L, Jenczewski E, Chèvre AM (2010) Crossovers get a boost in Brassica allotriploid and allotetraploid hybrids. Plant Cell 22:2253–2264

    Article  PubMed  CAS  Google Scholar 

  • Lien S, Szyda J, Schechinger B, Rappold G, Arnheim N (2000) Evidence for heterogeneity in recombination in the human pseudoautosomal region: high resolution analysis by sperm typing and radiation-hybrid mapping. Am J Hum Genet 66:557–566

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewski A, Curtis C (1993) Physical distribution of recombination in B-genome chromosomes of tetraploid wheat. Theor Appl Genet 86:121–127

    Article  CAS  Google Scholar 

  • Lyttle T (1991) Segregation distorters. Annu Rev Genet 25:511–557

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S et al (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed  Google Scholar 

  • Mantovani P, Maccaferri M, Sanguinetti M et al (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648

    Article  CAS  Google Scholar 

  • Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65:101–133

    Article  PubMed  CAS  Google Scholar 

  • Moen T, Hoymein B, Munck H, Gomez-Raya L (2004) A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes. Anim Genet 35:81–92

    Article  PubMed  CAS  Google Scholar 

  • Moore G (2000) Cereal chromosome structure, evolution, and pairing. Annu Rev Plant Physiol Plant Mol Biol 51:195–222

    Article  PubMed  CAS  Google Scholar 

  • Nachit M, Elouafi I, Pagnotta M et al (2001) Molecular linkage map of an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186

    Article  CAS  Google Scholar 

  • Nachman M (2002) Variation in recombination rate across the genome: evidence and implications. Curr Opin Genet Dev 12:657–663

    Article  PubMed  CAS  Google Scholar 

  • N’Diaye A, Van de Weg W, Kodde L, Koller B, Dunemann F, Thiermann M, Tartarini S, Gennari F, Durel C (2008) Construction of an integrated consensus map of the apple genome based on four mapping populations. Tree Genet Genomes 4:727–743

    Article  Google Scholar 

  • Paigen K, Szatkiewicz J, Sawyer K, Leahy N, Parvanov E, Ng S, Graber J, Broman K, Petkov P (2008) The recombinational anatomy of a mouse chromosome. PLoS Genet 4:e1000119

    Article  PubMed  Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder M, Kilian A, Korol A, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Korol A, Fahima T, Röder M, Ronin Y, Li Y, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    Article  PubMed  CAS  Google Scholar 

  • Piquemal J, Cinquin E, Couton E, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  PubMed  CAS  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clark JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  PubMed  CAS  Google Scholar 

  • Röder M, Korzun V, Wendhake K, Plaschke J, Tixier M, Leroy P, Ganal M (1998) A microsatellite map of wheat. Genome 149:2007–2023

    Google Scholar 

  • Saintenac C, Falque M, Martin O, Paux E, Feuillet C, Sourdille P (2009) Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181:393–403

    Article  PubMed  CAS  Google Scholar 

  • Schnable P, Hsia A, Nikolau B (1998) Genetic recombination in plants. Curr Opin Plant Biol 1:123–129

    Article  PubMed  CAS  Google Scholar 

  • See DR, Brooks S, Nelson JC, Brown-Guedira G, Friebe B, Gill BS (2006) Gene evolution at the ends of wheat chromosomes. Proc Natl Acad Sci USA 103:4162–4167

    Article  PubMed  CAS  Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy A, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  PubMed  CAS  Google Scholar 

  • Simianer H, Szyda J, Ramon G, Lien S (1997) Evidence for individual and between-family variability of the recombination rate in cattle. Mamm Genome 8:830–835

    Article  PubMed  CAS  Google Scholar 

  • Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal H (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. Theor Appl Genet 115:301–312

    Article  PubMed  CAS  Google Scholar 

  • Somers D, Isaac P, Edwards K (2004) High density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape J, Perretant M, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  PubMed  CAS  Google Scholar 

  • Stam P, Van Ooijen J (1995) JoinMap (tm) version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen

    Google Scholar 

  • Suprayogi Y, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009) Identification and validation of quantitative trait loci for grain protein concentration in adapted Canadian durum wheat populations. Theor Appl Genet 119:437–448

    PubMed  CAS  Google Scholar 

  • Thuillet A, Bataillon T, Poirier S, Santoni S, David J (2005) Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169:1589–1599

    Article  PubMed  CAS  Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Van Os H, Andrzejewski S, Bakker E et al (2006) Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerate gene isolation and a genomewide physical map. Genetics 173:1075–1087

    Article  PubMed  Google Scholar 

  • Voorips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP-a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrnal D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Wijnker E, de Jong H (2008) Managing meiotic recombination in plant breeding. Trends Plant Sci 13(12):640–646

    Article  PubMed  CAS  Google Scholar 

  • Yandeau-Nelson M, Nikolau B, Schnable P (2006) Effects of trans-acting genetic modifiers on meiotic recombination across the a1-sh2 interval of maize. Genetics 174:101–112

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377

    Article  PubMed  CAS  Google Scholar 

  • Zine El Aabidine A, Charafi J, Grout C, Doligez A, Santoni S, Moukhli A, Jay-Allemand C, El Modafar C, Khadari B (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50:2291–2302

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the ANR Génoplante and Qu@limed for their financial support through the programmes ProtNblé and Garicc, which made it possible to conduct this work. We also thank Jean-Claude Dusautoir for generating plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Roumet.

Additional information

This paper is dedicated to the memory of first author of this paper, Laurence Vaissayre 28 years old who passed away on August 23, 2011. This work was the first part of her PhD thesis and she cannot have the pleasure to see its publication. Her death was received with shock and sadness by her many friends and colleagues. The dedication is offered in tribute to Laurence outstanding scientific and her human qualities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaissayre, L., Ardisson, M., Borries, C. et al. Elite durum wheat genetic map and recombination rate variation in a multiparental connected design. Euphytica 185, 61–75 (2012). https://doi.org/10.1007/s10681-012-0627-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0627-y

Keywords

Navigation