Skip to main content
Log in

Transferability of non-genic microsatellite and gene-based sunflower markers to safflower

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Safflower (Carthamus tinctorius L.) DNA marker resources are currently very limited. The objective of this study was to determine the feasibility of transferring non-genic microsatellite (SSR) markers and gene-based markers, including intron fragment length polymorphism (IFLP) and resistance gene candidates (RGC)-based markers from sunflower (Helianthus annuus L.) to safflower, both species belonging to the Asteraceae family. Cross-species amplification of 119 non-genic SSRs, 48 IFLPs, and 19 RGC-based sunflower markers in 22 lines and germplasm accessions of safflower was evaluated. Additionally, 69 EST-SSR markers previously reported to amplify in safflower were tested. The results showed that 17.6% of the non-genic SSR, 56.2% of the IFLP, and 73.7% of the RGC-based markers were transferable to safflower. The percentage of transferable markers showing polymorphic loci was 66.6% for non-genic SSR, 70.6% for EST-SSR, 55.5% for IFLP, and 71.4% for RGC-based markers. The highest polymorphism levels were found for non-genic SSR. The average number of alleles per polymorphic locus and mean heterozygosity values were 2.9 and 0.46, respectively, for non-genic SSR, 2.2 and 0.35 for EST-SSR, 2.1 and 0.24 for IFLP, and 2.0 and 0.34 for RGC-based markers. The results of this study revealed a low rate of transferability for non-genic SSR sunflower markers and a better rate of transferability for IFLP and RGC-based markers. Transferable genic and non-genic sunflower markers can have utility for trait and comparative mapping studies in safflower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amini F, Saeidi G, Arzani A (2008) Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers. Euphytica 163:21–30

    Article  CAS  Google Scholar 

  • Chapman MA, Burke JM (2007) DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biol 7:60. doi:10.1186/1471-2229-7-60

    Article  PubMed  CAS  Google Scholar 

  • Chapman MA, Chang JC, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115:747–755

    Article  CAS  PubMed  Google Scholar 

  • Chapman MA, Hvala J, Strever J, Matvienko M, Kozik A, Michelmore RW, Tang S, Knapp SJ, Burke JM (2009) Development, polymorphism, and cross-taxon utility of EST–SSR markers from safflower (Carthamus tinctorius L.). Theor Appl Genet 120:85–91

    Article  CAS  PubMed  Google Scholar 

  • Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    CAS  PubMed  Google Scholar 

  • Fernández-Martínez JM, Pérez-Vich B, Akhtouch B, Velasco L, Muñoz-Ruz J, Melero-Vara JM, Domínguez J (2004) Registration of four sunflower germplasm lines resistant to race F of broomrape. Crop Sci 44:1033–1034

    Article  Google Scholar 

  • Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217

    Article  CAS  PubMed  Google Scholar 

  • Heesacker A, Kishore VK, Gao W, Tang S, Kolkman JM, Gingle A, Matvienko M, Kozik A, Michelmore RM, Lai Z, Rieseberg LH, Knapp SJ (2008) SSRs and INDELs mined from the sunflower EST database: Abundance, polymorphisms, and cross-taxa utility. Theor Appl Genet 117:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Jan CC (1992) Inheritance and allelism of mitomycin C- and streptomycin-induced recessive genes for male sterility in cultivated sunflower. Crop Sci 32:317–320

    Article  Google Scholar 

  • Johnson RC, Kisha TJ, Evans MA (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47:1728–1736

    Article  CAS  Google Scholar 

  • Kuleung C, Baenziger PS, Dweikat I (2004) Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet 108:1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Mündel HH, Bergman JW (2008) Safflower breeding. In: Vollmann J, Rajcan I (eds) Oil crop breeding. Springer Series Handbook of Plant Breeding, Springer, New York/Berlin. Reprinted for the 7th international safflower conference with permission from the Special Licensing Department, Springer, Dordrecht, The Netherlands

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  Google Scholar 

  • Pashley CH, Ellis JR, McCauley DE, Burke JM (2006) EST databases as a source for molecular markers: lessons from Helianthus. J Hered 97:381–388

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    CAS  PubMed  Google Scholar 

  • Plieske J, Struss D (2001) Microsatellite markers for genome analysis in Brassica. I. Development in Brassica napus and abundance in Brassicaceae species. Theor Appl Genet 102:689–694

    Article  CAS  Google Scholar 

  • Radwan O, Gandhi S, Heesacker A, Whitaker B, Taylor C, Plocik A, Kesseli R, Kozik A, Michelmore RW, Knapp SJ (2008) Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Mol Genet Genomics 280:111–125

    Article  CAS  PubMed  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  • Rossetto M (2001) Sourcing of SSR markers from related plant species. In: Henry RJ (ed) Plant genotyping: the DNA fingerprinting of plants. CABI, Wallingford, pp 211–224

    Chapter  Google Scholar 

  • Sujatha M (2008) Biotechnological interventions for genetic improvement of safflower. In: Knights SE, Potter TD (eds) Proceedings of the 7th international safflower conference, 3–6 November 2008, Wagga Wagga, New South Wales, Australia

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells M (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Velasco L, Fernández-Martínez JM (2000) Isolation of lines with contrasting seed oil fatty acid profiles from safflower germplasm. Sesame Safflower Newsl 15:104–108

    Google Scholar 

  • Velasco L, Fernández-Martínez JM (2004) Registration of CR-34 and CR-81 safflower germplasms with increased tocopherol. Crop Sci 44:2278

    Article  Google Scholar 

  • Velasco L, Pérez-Vich B, Hamdan Y, Fernández-Martínez JM (2005) Genetic study of several seed oil quality traits in safflower. In: Proceedings of the 6th international safflower conference, Istanbul, Turkey, 6–10 June 2005, pp 74–79

  • Whitton J, Rieseberg LH, Ungerer MC (1997) Microsatellite loci are not conserved across the Asteraceae. Mol Biol Evol 14:204–209

    CAS  PubMed  Google Scholar 

  • Yang YX, Wu W, Zheng YL, Chen L, Liu RJ, Huang CY (2007) Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs). Genet Resour Crop Evol 54:1043–1051

    Article  CAS  Google Scholar 

  • Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, Soper J, Han F, Chu WC, Webb DM, Thompson L, Edwards KJ, Berry ST, Leon A, Olungu C, Maes N, Knapp SJ (2003) Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci 43:367–387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Alberto J. Leon (Advanta Semillas, Balcarce, Buenos Aires, Argentina) and Dr. Steven J. Knapp (The University of Georgia, Athens, USA) for kindly providing IFLP and RGC markers, respectively. The research was funded by the Spanish Ministry of Science and Innovation, research project AGL-2007-62834.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pérez-Vich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Moreno, M.J., Velasco, L. & Pérez-Vich, B. Transferability of non-genic microsatellite and gene-based sunflower markers to safflower. Euphytica 175, 145–150 (2010). https://doi.org/10.1007/s10681-010-0139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0139-6

Keywords

Navigation