Skip to main content

Advertisement

Log in

Predicting potential distribution and range dynamics of Aquilegia fragrans under climate change: insights from ensemble species distribution modelling

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate change is one of the primary causes of species redistribution and biodiversity loss, especially for threatened and endemic important plant species. Therefore, it is vital to comprehend “how” and “where” priority medicinal and aromatic plants (MAPs) might be effectively used to address conservation-related issues under rapid climate change. In the present study, an ensemble modelling approach was used to investigate the present and future distribution patterns of Aquilegia fragrans Benth. under climate change in the entire spectrum of Himalayan biodiversity hotspot. The results of the current study revealed that, under current climatic conditions, the northwest states of India (Jammu and Kashmir, Himachal Pradesh and the northern part of Uttarakhand), the eastern and southern parts of Pakistan Himalaya have highly suitable climatic conditions for the growth of A. fragrans. The ensemble model exhibited high forecast accuracy, with temperature seasonality and precipitation seasonality as the main climatic variables responsible for the distribution of the A. fragrans in the biodiversity hotspot. Furthermore, the study predicted that future climate change scenarios will diminish habitat suitability for the species by −46.9% under RCP4.5 2050 and −55.0% under RCP4.5 2070. Likewise, under RCP8.5, the habitat suitability will decrease by −51.7% in 2050 and −94.3% in 2070. The current study also revealed that the western Himalayan area will show the most habitat loss. Some currently unsuitable regions, such as the northern Himalayan regions of Pakistan, will become more suitable under climate change scenarios. Hopefully, the current approach may provide a robust technique and showcases a model with learnings for predicting cultivation hotspots and developing scientifically sound conservation plans for this endangered medicinal plant in the Himalayan biodiversity hotspot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The distributional data analyzed in the current study are available from the Global Biodiversity Information Facility (GBIF) (https://www.gbif.org/occurrence), and bioclimatic data were obtained from the WorldClimdatabase (http://www.worldclim.org). All the data supporting the results and R codes are available from the corresponding author upon reasonable request.

References

  • Abhilash, P. C. (2021). Restoring the unrestored: Strategies for restoring global land during the UN decade on ecosystem restoration (UN–DER). Land, 10(2), 201. https://doi.org/10.3390/land10020201

  • Adhikari, P., Shin, M. S., Jeon, J. Y., Kim, H. W., Hong, S., & Seo, C. (2018). Potential impact of climate change on the species richness of subalpine plant species in the mountain national parks of South Korea. Journal of Ecology and Environment, 42(1), 1–10. https://doi.org/10.1186/s41610-018-0095-y

    Article  Google Scholar 

  • Ahmad, R., Khuroo, A. A., Charles, B., Hamid, M., Rashid, I., & Aravind, N. A. (2019a). Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change. Science and Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-47859

    Article  Google Scholar 

  • Ahmad, R., Khuroo, A. A., Hamid, M., Malik, A. H., & Rashid, I. (2019b). Scale and season determine the magnitude of invasion impacts on plant communities. Flora, 260, 151481. https://doi.org/10.1016/j.flora.2019.151481

  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Araújo, M. B., Alagador, D., Cabeza, M., Nogués‐Bravo, D., & Thuiller, W. (2011). Climate change threatens European conservation areas. Ecology Letters, 14(5), 484–492.

  • Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42–47.

    Article  Google Scholar 

  • Aryal, P. (2015). Climate change and its impact on medicinal and aromatic plants: A review. Climate Change, 1, 49–53.

    Google Scholar 

  • Baig, B. A., Ramamoorthy, D., & Wani, B. A. (2014). Population status and conservation prioritization of some threatened medicinal plants of Kashmir Himalaya. International Journal of Applied Biology and Pharmaceutical Technology, 5, 1–15.

  • Banerjee, A. K., Feng, H., Lin, Y., Liang, X., Wang, J., & Huang, Y. (2021). Setting the priorities straight: Species distribution models assist to prioritize conservation targets for the mangroves. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2021.150937,150937

    Article  Google Scholar 

  • Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327–338.

    Article  Google Scholar 

  • Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O., Swartz, B., Quental, T. B., & Ferrer, E. A. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471(7336), 51–57.

    Article  CAS  Google Scholar 

  • Barry, S., & Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied Ecology, 43(3), 413–423.

    Article  Google Scholar 

  • Beaumont, L. J., Graham, E., Duursma, D. E., et al. (2016). Which species distribution models are more (or less) likely to project broad–scale, climate–induced shifts in species ranges? Ecological Modelling, 342, 135–146. https://doi.org/10.1016/j.ecolmodel.2016.10.004

    Article  Google Scholar 

  • Bisht, M., Chandra Sekar, K., Mukherjee, S., Thapliyal, N., Bahukhandi, A., Singh, D., & Dey, D. (2022). Influence of anthropogenic pressure on the plant species richness and diversity along the elevation gradients of Indian Himalayan high-altitude protected areas. Frontiers in Ecology and Evolution, 10, 751989.

  • Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshean, R. A., et al. (1984). Classification and regression trees. Chapman and Hall, London. https://doi.org/10.1002/cyto.990080516

    Article  Google Scholar 

  • Busby, J. R. (1991). BIOCLIM – A bioclimate analysis and prediction system. In: Margules, C. R., Austin, M. P. (Eds.), Nature conservation: Cost effective biological surveys and data analysis. CSIRO, pp. 64–68.

  • Cao, B., Bai, C., Zhang, L., et al. (2016). Modelling habitat distribution of Cornus officinalis with Maxent modeling and fuzzy logics in China. Plant Ecology, 9(6), 742–751. https://doi.org/10.1093/jpe/rtw009

    Article  Google Scholar 

  • Cardillo, M., Mace, G. M., Gittleman, J. L., Jones, K. E., Bielby, J., & Purvis, A. (2008). The predictability of extinction: Biological and external correlates of decline in mammals. Proceedings of the Royal Society B: Biological Sciences, 275(1641), 1441–1448.

    Article  Google Scholar 

  • Cardillo, M., Purvis, A., Sechrest, W., Gittleman, J. L., Bielby, J., Mace, G. M., & Moritz, C. (2004). Human population density and extinction risk in the world’s carnivores. PLoS One2(7), e197. https://doi.org/10.1371/journal.pbio.0020197

  • Cawsey, E. M., Austin, M. P., & Baker, B. L. (2002). Regional vegetation mapping in Australia: A case study in the practical use of statistical modelling. Biodiversity & Conservation, 11(12), 2239–2274.

    Article  Google Scholar 

  • Chapman, D. S., Makra, L., Albertini, R., Bonini, M., Páldy, A., Rodinkova, V., & Bullock, J. M. (2016). Modelling the introduction and spread of non-native species: International trade and climate change drive ragweed invasion. Global Change Biology, 22(9), 3067–3079.

    Article  Google Scholar 

  • Chauhan, H. K., & Bisht, A. K. (2020). Trillium govanianum. In: The IUCN Red List of Threatened Species e.T175804005A176257695. https://doi.org/10.2305/IUCN.UK.2020.RLTS.T175804005A176257695.en

  • Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond predictions: Biodiversity conservation in a changing climate. Science, 332(6025), 53–58.

    Article  CAS  Google Scholar 

  • Dormann, C. F., Elith, J., Bacher, S., et al. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40(1), 677–697.

    Article  Google Scholar 

  • Elith, J., Ferrier, S., Huettmann, F., et al. (2005). The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecological Modelling, 186, 280–289. https://doi.org/10.1016/j.ecolmodel.2004.12.007

    Article  Google Scholar 

  • Engelmann, F. (2011). Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cellular & Developmental Biology-Plant, 47, 5–16.

    Article  Google Scholar 

  • Fischer, J., Riechers, M., Loos, J., Martin-Lopez, B., & Temperton, V. M. (2021). Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends in Ecology & Evolution, 36(1), 20–28. https://doi.org/10.1016/j.tree.2020.08.018

    Article  Google Scholar 

  • Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., ... & Rummukainen, M. (2014). Evaluation of climate models. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 741-866). Cambridge University Press.

  • Ganie, A. H., Tali, B. A., Khuroo, A. A., Reshi, Z. A., & Nawchoo, I. A., (2019). Impact assessment of anthropogenic threats to high-valued medicinal plants of Kashmir Himalaya, India. Journal for Nature Conservation, 50, 125715. https://doi.org/10.1016/j.jnc.2019.125715

  • Gao, C., Sun, W.-B., Wang, X.-X., Kongkiatpaiboon, S., & Cai, X.-H. (2019). Conserving threatened widespread species: A case study using a traditional medicinal plant in Asia. Biodiversity and Conservation, 28(1), 213–227. https://doi.org/10.1007/s10531-018-1648-1

    Article  Google Scholar 

  • Gong, M., Guan, T., Hou, M., Liu, G., & Zhou, T. (2017). Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecology and Evolution, 7(2), 596–605. https://doi.org/10.1002/ece3.2650

    Article  Google Scholar 

  • Gritti, E. S., Duputie, A., Massol, F., & Chuine, I. (2013). Estimating consensus and associated uncertainty between inherently different species distribution models. Methods in Ecology and Evolution, 4(5), 442–452. https://doi.org/10.1111/2041-210X.12032

    Article  Google Scholar 

  • Grytnes, J. A., & Vetaas, O. R. (2002). Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist, 159(3), 294–304. https://doi.org/10.1086/338542

    Article  Google Scholar 

  • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.

    Article  Google Scholar 

  • Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models: With applications in R. Cambridge, UK: Cambridge University Press.

  • Gulzar, A., Hamid, M., Dar, F. A., Wani, S. A., Malik, A. H., Kamili, A. N., & Khuroo, A. A. (2022). Patterns of floristic and functional diversity in two treeline ecotone sites of Kashmir Himalaya. Environmental Monitoring and Assessment, 194(6), 420.

    Article  Google Scholar 

  • Hamid, M., Khuroo, A. A., Malik, A. H., Ahmad, R., Singh, C. P., Dolezal, J., & Haq, S. M. (2020a). Early evidence of shifts in alpine summit vegetation: A case study from Kashmir Himalaya. Frontiers in Plant Science, 11, 421.

    Article  Google Scholar 

  • Hamid, M., Khuroo, A. A., Ahmad, R., Rasheed, S., Malik, A. H., & Dar, G. H. (2020b). Threatened Flora of Jammu and Kashmir State. In: Biodiversity of the Himalaya: Jammu and Kashmir State. Springer, Singapore, pp. 957–995. https://doi.org/10.1007/978-981-32-9174-4_37

  • Hamid, M., Khuroo, A. A., Charles, B., Ahmad, R., Singh, C. P., & Aravind, N. A. (2019). Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. Biodiversity and Conservation, 28(8), 2345–2370. https://doi.org/10.1007/s10531-018-1641-8

    Article  Google Scholar 

  • Hassan, T., Ahmad, R., Wani, S. A., Gulzar, R., Waza, S. A., & Khuroo, A. A. (2022). Climate warming–driven phenological shifts are species-specific in woody plants: Evidence from twig experiment in Kashmir Himalaya. International Journal of Biometeorology, 1–15.

  • Hassan, T., Hamid, M., Wani, S. A., Malik, A. H., Waza, S. A., & Khuroo, A. A., (2021). Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: Supplementing decadal field records with historical and experimental evidences. Science of the Total Environment, 795, 148811. https://doi.org/10.1016/j.scitotenv.2021.148811

  • Hastie, T., Tibshirani, R., & Buja, A. (1994). Flexible discriminant analysis by optimal scoring. Journal of American Statistical Association, 89(428), 1255–1270. https://doi.org/10.1080/01621459.1994.10476866

    Article  Google Scholar 

  • Hastie, T. J., & Tibshirani, R. (1990). Generalized additive models. Chapman and Hall.

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., et al. (2005). Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Hussain, I., Bano, A., & Ullah, F. (2011). Traditional drug therapies from various medicinal plants of central Karakoram National Park, Gilgit-Baltistan Pakistan. Pakistan Journal of Botany, 43, 79–84.

    Google Scholar 

  • IPBES. (2019). In: Brondizio, E. S., Settele, J., Díaz, S., Ngo, H. T. (Eds.), Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, Germany, p. 1148. https://doi.org/10.5281/zenodo.3831673

  • IPCC. (2022). Summary for Policymakers. H.-O. Pörtner, D. C. Roberts, E. S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (Eds.), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3–33. https://doi.org/10.1017/9781009325844.001

  • IUCN. (2021). The IUCN Red List of threatened species. Version 2021–1. Retrieved December 2022, from https://www.iucnredlist.org/

  • Joshi, B., & Pant, S. C. (2012). Ethnobotanical study of some common plants used among the tribal communities of Kashipur, Uttarakhand. Indian Journal of Natural Products and Resources, 3, 262–266.

  • Khan, K. U., Shah, M., Ahmad, H., Khan, S. M., Rahman, I. U., Iqbal, Z., & Aldubise, A. (2018). Exploration and local utilization of medicinal vegetation naturally grown in the Deusai plateau of Gilgit, Pakistan. Saudi journal of biological sciences, 25(2), 326–331.

    Article  Google Scholar 

  • Khuroo, A. A., Dar, F. A., Hamid, M., Ahmad, R., Wani, S. A., Gulzar, A., & Singh, C. P. (2023). Patterns of plant species richness across the Himalayan treeline ecotone. In Ecology of Himalayan Treeline Ecotone, (pp. 267–305). Singapore: Springer Nature Singapore.

  • Khuroo, A. A., Reshi, Z. A., Malik, A. H., Weber, E., Rashid, I., & Dar, G. H. (2012). Alien flora of India: Taxonomic composition, invasion status and biogeographic affiliations. Biological Invasions, 14(1), 99–113.

    Article  Google Scholar 

  • Kraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A. Q., Shearer, F. M., Barker, C. M., & Hay, S. I. (2015). The global distribution of the arbovirus vectors Aedesaegypti and Ae. albopictus. Elife, 4, e08347.

  • Kumari, P., Wani, I. A., Khan, S., Verma, S., Mushtaq, S., Gulnaz, A., & Paray, B. A. (2022). Modeling of Valeriana wallichii habitat suitability and niche dynamics in the Himalayan Region under anticipated climate change. Biology, 11(4), 498.

    Article  Google Scholar 

  • Lal, B., & Singh, K. N. (2008). Indigenous herbal remedies used to cure skin disorders by the native of Lahaul-Spiti in Himachal Pradesh. Indian Journal of Traditional Knowledge, 7, 237–241.

  • Li, R., Xu, M., Wong, M. H. G., Qiu, S., Sheng, Q., Li, X., & Song, Z. (2015). Climate change-induced decline in bamboo habitats and species diversity: Implications for giant panda conservation. Diversity and Distributions, 21(4), 379–391. https://doi.org/10.1111/ddi.12284

    Article  Google Scholar 

  • Maiti, P., Kuniyal, J. C., Sekar, K. C., Satish, K. V., Singh, D., Bisht, N., & Sundriyal, R. C. (2022). Landscape level ecological assessment and eco-restoration strategies for alpine and sub-alpine regions of the Central Himalaya. Ecological Engineering, 180, 106674

  • Mainali, K. P., Warren, D. L., Dhileepan, K., McConnachie, A., Strathie, L., Hassan, G., & …& Parmesan, C. (2015). Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling. Global Change Biology, 21(12), 4464–4480.

    Article  Google Scholar 

  • Majid, A., Ahmad, H., Saqib, Z., Rahman, I. U., Khan, U., Alam, J., & …& Ali, N. (2020). Exploring threatened traditional knowledge: Ethnomedicinal studies of rare endemic flora from Lesser Himalayan region of Pakistan. Revista Brasileira De Farmacognosia, 29, 785–792.

    Article  Google Scholar 

  • Manes, S., Costello, M. J., Beckett, H., Debnath, A., Devenish-Nelson, E., Grey, K. A., & Vale, M. M. (2021). Endemism increases species' climate change risk in areas of global biodiversity importance. Biological Conservation, 257, 109070.

  • Mariani, M., Fletcher, M. S., Haberle, S., Chin, H., Zawadzki, A., & Jacobsen, G. (2019). Climate change reduces resilience to fire in subalpine rainforests. Global Change Biology, 25(6), 2030–2042. https://doi.org/10.1111/gcb.14609

    Article  Google Scholar 

  • Marmion, M., Parviainen, M., Luoto, M., et al. (2009). Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15, 59–69. https://doi.org/10.1111/j.1472-4642.2008.00491.x

    Article  Google Scholar 

  • Mathew, B., & Sinnott, M. (2003). Aquilegia fragrans-Ranunculaceae. Royal Botanic Gardens, Kew. Blackwell Publishing Ltd. Page 151.

  • McCullagh, P., &Nelder, J. A. (1989a). Binary data. In Generalized linear models (pp. 98–148). Springer US.

  • McCullagh, P., & Nelder, J. A. (1989b). Generalized linear models, 2nd ed. Chapman and Hall. https://doi.org/10.1201/9780203753736

  • McSHEA, W. J. (2014). What are the roles of species distribution models in conservation planning? Environmental Conservation, 41(2), 93–96.

    Article  Google Scholar 

  • Mehta, P., Bisht, K., & Sekar, K. C. (2020a). Diversity of threatened medicinal plants of Indian Himalayan Region. Plant Biosystem, 1–12. https://doi.org/10.1080/11263504.2020a.1837278

  • Mehta, P., Sekar, K. C., Bhatt, D., Tewari, A., Bisht, K., Upadhyay, S., Negi, V. S., & Soragi, B. (2020). Conservation and prioritization of threatened plants in Indian Himalayan Region. Biodiversity and Conservation, 29(6), 1723–1745. https://doi.org/10.1007/s10531-020-01959-x

    Article  Google Scholar 

  • Miehe, G., Pendry, C. A., & Chaudhary, R. (2015). Nepal: An introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden, Edinburgh, UK, 2015.

  • Mir, A. H., Tyub, S., & Kamili, A. N. (2020). Ecology, distribution mapping and conservation implications of four critically endangered endemic plants of Kashmir Himalaya. Saudi Journal of Biological Sciences, 27(9), 2380–2389. https://doi.org/10.1111/j.1472-4642.2008.00491.x

    Article  Google Scholar 

  • Moss, R. H. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. https://doi.org/10.1038/nature08823

    Article  CAS  Google Scholar 

  • Norberg, A., Abrego, N., Blanchet, F. G., Adler, F. R., Anderson, B. J., Anttila, J., Araujo, M. B., Dallas, T., Dunson, D., Elith, J., Foster, S. D., Fox, R., Franklin, J., Godsoe, W., Guisan, A., Hara, B. O., Hill, N. A., Holt, R. D., Hui, F. K. C., &Ovaskainen, O. (2019). A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 89(3), e01370. https://doi.org/10.1002/ecm.1370

    Article  Google Scholar 

  • O’Neill, A. R., Badola, H. K., Dhyani, P. P., & Rana, S. K. (2017). Integrating ethnobiological knowledge into biodiversity conservation in the Eastern Himalayas. Journal of Ethnobiology and Ethnomedicine, 13(1), 1–14.

    Article  Google Scholar 

  • Olsen, C. S. (2005). Valuation of commercial central Himalayan medicinal plants. Ambio, 34(8), 607–610. https://doi.org/10.1579/0044-7447-34.8.607

    Article  Google Scholar 

  • Olsen, C. S., & Bhattarai, N. (2005). A typology of economic agents in the Himalayan plant trade. Mountain Research and Development, 25(1), 37–43. https://doi.org/10.1659/0276-4741(2005)025[0037:ATOEAI]2.0.CO;2

    Article  Google Scholar 

  • Padilla, F. M., & Pugnaire, F. I. (2006). The role of nurse plants in the restoration of degraded environments. Frontiers in Ecology and the Environment, 4(4), 196–202.

    Article  Google Scholar 

  • Palmer, M. A., Filoso, S., & Fanelli, R. M. (2014). From ecosystems to ecosystem services: Stream restoration as ecological engineering. Ecological Engineering, 65, 62–70. https://doi.org/10.1016/j.ecoleng.2013.07.059

    Article  Google Scholar 

  • Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x

    Article  Google Scholar 

  • Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications, 19(1), 181–197.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Porfirio, L. L., Harris, R. M., Lefroy, E. C., Hugh, S., Gould, S. F., Lee, G., & …& Mackey, B. (2014). Improving the use of species distribution models in conservation planning and management under climate change. PLoS One, 9(11), e113749.

    Article  Google Scholar 

  • POWO. (2023). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. Retrieved March 9, 2023, from http://www.plantsoftheworldonline.org/

  • Purvis, A., Gittleman, J. L., Cowlishaw, G., & Mace, G. M. (2000). Predicting extinction risk in declining species. Proceedings of the royal society of London. Series B: Biological Sciences, 267(1456), 1947–1952.

    Article  CAS  Google Scholar 

  • Rana, S. K., Rana, H. K., Ranjitkar, S., Ghimire, S. K., Gurmachhan, C. M., O’Neill, A. R., & Sun, H. (2020). Climate-change threats to distribution, habitats, sustainability and conservation of highly traded medicinal and aromatic plants in Nepal. Ecological Indicators, 115, 106435.

    Article  Google Scholar 

  • Rana, S. K., Rana, H. K., Ghimire, S. K., Shrestha, K. K., & Ranjitkar, S. (2017). Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science, 14(3), 558–570. https://doi.org/10.1007/s11629-015-3822-1

    Article  Google Scholar 

  • Rana, S. K., Rawal, R. S., Dangwal, B., Bhatt, I. D., & Price, T. D., (2021). 200 Years of research on Himalayan biodiversity: Trends, gaps, and policy implications. Frontiers in Ecology and Evolution, 8, 603422. https://doi.org/10.3389/fevo.2020.603422

  • Rani, S., Rana, J. C., Jeelani, S. M., Gupta, R. C., & Kumari, S. (2013). Ethnobotanical notes on 30 medicinal polypetalous plants of district Kangra of Himachal Pradesh. Journal of Medicinal Plants Research, 7(20), 1362–1369.

    Google Scholar 

  • Ranjitkar, S., Luedeling, E., Shrestha, K. K., Guan, K., & Xu, J. (2013). Flowering phenology of tree Rhododendron along an elevation gradient in two sites in the Eastern Himalayas. International Journal of Biometeorology, 57(2), 225–240. https://doi.org/10.1007/s00484-012-0548-4

    Article  Google Scholar 

  • Ranjitkar, S., Sujakhu, N. M., Merz, J., Kindt, R., Xu, J., Matin, M. A., & Zomer, R. J. (2016). Suitability analysis and projected climate change impact on banana and coffee production zones in Nepal. PloS One, 11(9), e0163916.

  • Rather, Z. A., Ahmad, R., & Khuroo, A. A. (2022). Ensemble modelling enables identification of suitable sites for habitat restoration of threatened biodiversity under climate change: A case study of Himalayan Trillium. Ecological Engineering, 176, 106534.

    Article  Google Scholar 

  • Rather, Z. A., Ahmad, R., Dar, A. R., Dar, T. U. H., & Khuroo, A. A. (2021). Predicting shifts in distribution range and niche breadth of plant species in contrasting arid environments under climate change. Environmental Monitoring and Assessment, 193(7), 1–17. https://doi.org/10.1007/s10661-021-09160-5

    Article  CAS  Google Scholar 

  • Ren, H., Shen, W. J., Lu, H. F., Wen, X. Y., & Jian, S. G. (2007). Degraded ecosystems in China: Status, causes, and restoration efforts. Landscape and Ecological Engineering, 3(1), 1–13. https://doi.org/10.1007/s11355-006-0018-4

    Article  Google Scholar 

  • Ridgeway, G. (1999). The state of boosting. Computing Science and Statistics, 172–181.

  • Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge University Press.

    Book  Google Scholar 

  • Roy, A., &Srivastava, V. K. (2012). Geospatial approach to identification of potential hotspots of land-use and land-cover change for biodiversity conservation. Current Science, 1174–1180.

  • Salam, N., Reshi, Z., & Shah, M. (2020). Habitat suitability modelling for Lagotis cashmeriana (ROYLE)RUPR., a threatened species endemic to Kashmir Himalayan alpines. Geo. Ecol. L and, 2020, 1–11. https://doi.org/10.1080/24749508.2020.1816871

    Article  Google Scholar 

  • Santangeli, A., Rajasärkkä, A., & Lehikoinen, A. (2017). Effects of high latitude protected areas on bird communities under rapid climate change. Global Change Biology, 23(6), 2241–2249.

    Article  Google Scholar 

  • Sekar, K. C., Thapliyal, N., Pandey, A., Joshi, B., Mukherjee, S., Bhojak, P., & Bahukhandi, A. (2023). Plant species diversity and density patterns along altitude gradient covering high-altitude alpine regions of west Himalaya, India. Geology, Ecology, and Landscapes, 1–15.

  • Singh, K. N. (2013). Traditional knowledge on ethnobotanical uses of plant biodiversity: A detailed study from the Indian western Himalaya. Biodiversity Research and Conservation, 28, 63–77.

  • Sofi, I. I., Verma, S., Charles, B., Ganie, A. H., Sharma, N., & Shah, M. A. (2022). Predicting distribution and range dynamics of Trillium govanianum under climate change and growing human footprint for targeted conservation. Plant Ecology, 1–17.

  • Sundblad, G., Bergström, U., & Sandström, A. (2011). Ecological coherence of marine protected area networks: A spatial assessment using species distribution models. Journal of Applied Ecology, 48(1), 112–120.

  • Tali, B. A., Ganie, A. H., Nawchoo, I. A., Wani, A. A., & Reshi, Z. A. (2015). Assessment of threat status of selected endemic medicinal plants using IUCN regional guidelines: A case study from Kashmir Himalaya. Journal for Nature Conservation, 23, 80–89. https://doi.org/10.1016/j.jnc.2014.06.004

    Article  Google Scholar 

  • Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD a platform for ensemble forecasting of species distributions. Ecography, 32, 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742

    Article  Google Scholar 

  • Troll, C. (1972). The three-dimensional zonation of the Himalayan system. Geoecology of the High Mountain Regions of Eurasia, 264–275.

  • Uprety, Y., Chettri, N., Dhakal, M., Asselin, H., Chand, R., & Chaudhary, R. P., (2021). Illegal wildlife trade is threatening conservation in the transboundary landscape of Western Himalaya. Journal for Nature Conservation59, 125952. https://doi.org/10.1016/j.jnc.2020.125952

  • Uprety, Y., Poudel, R. C., Gurung, J., Chettri, N., & Chaudhary, R. P. (2016). Traditional use and management of NTFPs in Kangchenjunga Landscape: Implications for conservation and livelihoods. Journal of Ethnobiology and Ethnomedicine, 12, 19. https://doi.org/10.1186/s13002-016-0089-8

    Article  Google Scholar 

  • Wang, H. H., Wonkka, C. L., Treglia, M. L., Grant, W. E., Smeins, F. E., & Rogers, W. E. (2015). Species distribution modelling for conservation of an endangered endemic orchid. AoB Plants 2020, 7, plv039. https://doi.org/10.1093/aobpla/plv039

  • Wani, B. A., Wani, S. A., Magray, J. A., Ahmad, R., Ganie, A. H., & Nawchoo, I. A. (2022a). Habitat suitability, range dynamics, and threat assessment of Swertiapetiolata D. Don: A Himalayan endemic medicinally important plant under climate change. Environmental Monitoring and Assessment, 195(1), 1–18.

  • Wani, I. A., Verma, S., Mushtaq, S., Alsahli, A. A., Alyemeni, M. A., Tariq, M., & Pant, S. (2021). Ecological analysis and environmental niche modelling of Dactylorhizahatagirea (D. Don) Soo: A conservation approach for critically endangered medicinal orchid. Saudi Journal of Biological Sciences, 28, 2109–2122. https://doi.org/10.1016/j.sjbs.2021.01.054

    Article  Google Scholar 

  • Wani, S. A., Ahmad, R., Gulzar, R., Rashid, I., Malik, A. H., & Khuroo, A. A. (2022b). Diversity, distribution and drivers of Alien Flora in the Indian Himalayan Region. Global Ecology and Conservation, e02246.

  • West, A. M., Evangelista, P. H., Jarnevich, C. S., Kumar, S., Swallow, A., Luizza, M. W., & Chignell, S. M. (2017). Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software. International Journal of Applied Earth Observation and Geoinformation, 59, 135–146.

    Article  Google Scholar 

  • White, A. E., Dey, K. K., Mohan, D., Stephens, M., & Price, T. D. (2019). Regional influences on community structure across the tropical-temperate divide. Nature Communications, 10(1), 1–8.

    Article  Google Scholar 

  • Zellmer, A. J., Claisse, J. T., Williams, C. M., Schwab, S., & Pondella, D. J., (2019). Predicting optimal sites for ecosystem restoration using stacked-species distribution modeling. Frontiers in Marine Science, 6, 3. https://doi.org/10.3389/fmars.2019.00003

  • Zhong, Y., Xue, Z., Jiang, M., Liu, B., & Wang, G. (2021). The application of species distribution modeling in wetland restoration: A case study in the Songnen Plain, Northeast China. Ecological Indicators, 121, 107137. https://doi.org/10.1016/j.ecolind.2020.107137

  • Zimmermann, N. E., Edwards, T. C., Jr., Graham, C. H., Pearman, P. B., & Svenning, J. C. (2010). New trends in species distribution modelling. Ecography, 33(6), 985–989. https://doi.org/10.1111/j.1600-0587.2010.06953.x

    Article  Google Scholar 

  • Zurick, D., & Pacheco, J. (2006). Illustrated atlas of the Himalayas. Lexington: The University Press of Kentuchy.

    Google Scholar 

Download references

Acknowledgements

We are thankful to Head Department of Botany, University of Kashmir, for providing the necessary facilities for this research work. We are thankful to our colleagues for their support in the field and Laboratory work. We are highly thankful to the esteemed editor and anonymous reviewers for their valuable comments on the earlier version of the manuscript, which significantly improved its quality.

Funding

The authors acknowledge the funding under MANF- 2018–19-JAM-99722 in favor of IAB.

Author information

Authors and Affiliations

Authors

Contributions

Irshad Ahmad Bhat and Mudasir Fayaz perceived the research idea. Roof-ul-Qadir, Shah Rafiq, Jasfeeda Qadir and Zahoor A. Kaloo supervised the research work. Irshad Ahmad Bhat, Mudasir Fayaz and Shah Rafiq collected field and herbarium data. Irshad Ahmad Bhat, Mudasir Fayaz and Tareq Wani conducted modelling and data analysis; validation and visualization were carried out by Tareq Wani, Zahoor A. Kaloo and Khushboo Guleria. The original draft was written by Irshad Ahmad Bhat and Khushboo Guleria with a detailed review, editing and inputs from Zahoor A. Kaloo, Jasfeeda Qadir and Roof-ul-Qadir. All the authors reviewed and approved the final draft for submission.

Corresponding author

Correspondence to Irshad Ahmad Bhat.

Ethics declarations

Ethics statement

“All authors have read understood and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors”

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, I.A., Fayaz, M., Roof-ul-Qadir et al. Predicting potential distribution and range dynamics of Aquilegia fragrans under climate change: insights from ensemble species distribution modelling. Environ Monit Assess 195, 623 (2023). https://doi.org/10.1007/s10661-023-11245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11245-2

Keywords

Navigation