Skip to main content

Advertisement

Log in

Predicting shifts in distribution range and niche breadth of plant species in contrasting arid environments under climate change

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Arid environments face extreme risk from contemporary climate change; therefore, predicting the shifts in species distribution range and niche breadth in these environments assumes urgent research priority. Here we report the potential distribution and predict future distribution range of two model plant species typically representing contrasting environments across Asia and Africa: hot-arid Ephedra foliata and cold-arid E. gerardiana. We adopted a comparative modelling approach and used occurrence points from extensive field surveys, supplemented with herbaria records and publicly available distribution data. Our study reveals that currently an area of 8.797334 × 106 km2 (8.8%) is potentially suitable for E. foliata and nearly half 4.759326 × 106 km2 (4.8%) for E. gerardiana. Under future climate change scenarios, distribution range of E. foliata is predicted to expand but contract in E. gerardiana. Similarly, E. foliata showed broader niche breadth which is predicted to increase under B1 (0.097–0.125) and B2 (0.878–0.930) climatic change scenarios. In contrast, E. gerardiana had narrower niche breadth and expected to further decrease under B1 (0.081–0.078) and B2 (0.878–0.854). The most influential bioclimatic variable governing the potential distribution and niche breadth of E. foliata was the precipitation of warmest quarter, whereas that of E. gerardiana was temperature seasonality. The results from our study can help in developing potential indicator plant species for assessment and monitoring of distribution range shifts in response to changing climate in the arid environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The distributional datasets analysed during the current study are available from the Global Biodiversity Information Facility-GBIF repository (https://www.gbif.org/occurrence), and bioclimatic data were analysed from WorldClim database repository (http://www.worldclim.org).

References

  • Abdelaal, M., Fois, M., Fenu, G., & Bacchetta, G. (2019). Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecological informatics50, 68–75. https://doi.org/10.1016/j.ecoinf.2019.01.003

  • Adhikari, D., Reshi, Z., Datta, B. K., Samant, S. S., Chettri, A., Upadhaya, K., & Barik, S. K. (2018). Inventory and characterization of new populations through ecological niche modelling improve threat assessment. Current Science, 114(3), 519–531.

    Article  Google Scholar 

  • Ahmad, R., Khuroo, A. A., Hamid, M., Charles, B., & Rashid, I. (2019). Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodiversity and Conservation28(8), 2319–2344. https://doi.org/10.1007/s10531-019-01775-y

  • Ardestani, E. G., Tarkesh, M., Bassiri, M., & Vahabi, M. R. (2015). Potential habitat modeling for reintroduction of three native plant species in central Iran. Journal of Arid Land, 7(3), 381–390.

    Article  Google Scholar 

  • Aronson, J., & Floc’h, E. L., Ovalle, C. . (2002). Semi-arid woodlands and desert fringes. In A. Davy (Ed.), Perrow M (pp. 466–485). Handbook of ecological restoration.

    Google Scholar 

  • Askew, R. R., & Blasco-Zumeta, J. (1997). Parasitic Hymenoptera inhabiting seeds of Ephedra nebrodensis in Spain, with descriptions of a phytophagous pteromalid and four other new species of Chalcidoidea. Journal of Natural History31(6), 965–982. https://doi.org/10.1080/00222939700770471

  • Austin, M. P., & Van Niel, K. P. (2011). Improving species distribution models for climate change studies: Variable selection and scale. Journal of Biogeography, 38(1), 1–8. https://doi.org/10.1111/j.1365-2699.2010.02416.x

    Article  Google Scholar 

  • Barga, S. C., Dilts, T. E., & Leger, E. A. (2018). Contrasting climate niches among co-occurring subdominant forbs of the sagebrush steppe. Diversity and Distributions, 24(9), 1291–1307. https://doi.org/10.1111/ddi.12764

    Article  Google Scholar 

  • Bertrand, R., Perez, V., & Gégout, J. C. (2012). Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: The case of Quercus pubescens in France. Global Change Biology, 18(8), 2648–2660. https://doi.org/10.1111/j.1365-2486.2012.02679x

    Article  Google Scholar 

  • Boozer, C. N., Nasser, J. A., Heymsfield, S. B., Wang, V., Chen, G., & Solomon, J. L. (2001). An herbal supplement containing Ma Huang-Guarana for weight loss: A randomized, double-blind trial. International Journal of Obesity, 25(3), 316–324. https://doi.org/10.1038/sj.ijo.0801539x

    Article  CAS  Google Scholar 

  • Brown, J. L. (2014). SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200

    Article  Google Scholar 

  • Cai, Q., Welk, E., Ji, C., Fang, W., Sabatini, F. M., & Zhu, J. (2021). The relationship between niche breadth and range size of beech (Fagus) species worldwide. Journal of Biogeography, 48(5), 1240–1253. https://doi.org/10.1111/jbi.14074

    Article  Google Scholar 

  • Carlquist, S. (1992). Wood, bark, and pith anatomy of Old World species of Ephedra and summary for the genus. Aliso: A Journal of Systematic and Evolutionary Botany13(2), 255–295.

  • Caveney, S., Charlet, D. A., Freitag, H., Maier-Stolte, M., & Starratt, A. N. (2001). New observations on the secondary chemistry of world Ephedra (Ephedraceae). American Journal of Botany, 88(7), 1199–1208. https://doi.org/10.2307/3558330x

    Article  CAS  Google Scholar 

  • Chandra Sekar, K., & Srivastava, S. K. (2009). Flora of the Pin Valley National Park, Himachal Pradesh. Botanical Survey of India, Ministry of Environment and Forests. 27.

  • Chaudhri, I. I. (1963). Distribution of gymnosperms in West Pakistan. Vegetatio, 11(5), 372–382.

    Google Scholar 

  • Chen, S. L., Yu, H., Luo, H. M., Wu, Q., Li, C. F., & Steinmetz, A. (2016). Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chinese Medicine, 11(1), 1–10. https://doi.org/10.1186/s13020-016-0108-7x

    Article  Google Scholar 

  • Danciu, C., Muntean, D., Alexa, E., Farcas, C., Oprean, C., Zupko, I., & Dehelean, C. A. (2019). Phytochemical characterization and evaluation of the antimicrobial, antiproliferative and pro-apoptotic potential of Ephedra alata Decne. hydroalcoholic extract against the MCF-7 breast cancer cell line. Molecules24(1), 13. https://www.mdpi.com/1420-3049/24/1/13x

  • Dar, A. R., & Dar, G. H. (2006). The wealth of Kashmir Himalaya-gymnosperms. Asian Journal of Plant Sciences, 5(2), 251–259.

    Article  Google Scholar 

  • Davies, T. J., Purvis, A., & Gittleman, J. L. (2009). Quaternary climate change and the geographic ranges of mammals. The American Naturalist, 174(3), 297–307. https://doi.org/10.1086/603614

    Article  Google Scholar 

  • Devi, U., Seth, M. K., Sharma, P., & Rana, J. C. (2013). Study on ethnomedicinal plants of Kibber Wildlife Sanctuary: A cold desert in Trans Himalaya, India. Journal of Medicinal Plants Research7(47), 3400–3419. https://doi.org/10.5897/JMPR2013.5298

  • Duffy, K. J., & Jacquemyn, H. (2019). Climate change increases ecogeographical isolation between closely related plants. Journal of Ecology107(1), 167–177. https://doi.org/10.1111/1365-2745.13032x

  • Faleiro, F. V., Machado, R. B., & Loyola, R. D. (2013). Defining spatial conservation priorities in the face of land-use and climate change. Biological Conservation158, 248–257. https://doi.org/10.1016/j.biocon.2012.09.020

  • Freitag, H., & Maier‐Stolte, M. (1989). The Ephedra‐species of P. Forsskål: Identity and typification. Taxon38(4), 545–556.

  • Freitag, H., & Maier-Stolte, M. (2003). The genus Ephedra in NE tropical Africa. Kew Bulletin, 415–426. https://www.jstor.org/stable/4120624

  • Freitag, H. (2010). Ephedraceae. In: Breckle SW, Dittmann A, Rafiqpoor MD (Eds.), Field guide Afghanistan, Bonn: Scientia Bonnensis, 196–201.

  • Fu, L. G., Yu, Y. F., Harald, R. (1999). Ephedraceae. In: Wu ZY, Raven PH (Eds.), Flora of China, Beijing, Science Press; St. Louis: Missouri Botanical Garden. 4, 97–101.

  • Gairola, S., Sharma, J., & Bedi, Y. S. (2014). A cross-cultural analysis of Jammu, Kashmir and Ladakh (India) medicinal plant use. Journal of Ethnopharmacology155(2), 925–986. https://doi.org/10.1016/j.jep.2014.06.029x

  • Gilani, H., Goheer, M. A., Ahmad, H., & Hussain, K. (2020). Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecological Indicators111, 106049. https://doi.org/10.1016/j.ecolind.2019.106049x

  • Grant, A. G., & Kalisz, S. (2020). Do selfing species have greater niche breadth? Support from ecological niche modeling. Evolution74(1), 73–88. https://doi.org/10.1111/evo.13870

  • Gunin, P. D., Bazha, S. N., Danzhalova, E. V., Dmitriev, I. A., Drobyshev, Y. I., Kazantseva, T. I., & Jargalsaikhan, L. (2012). Expansion of Ephedra sinica Stapf. in the arid steppe ecosystems of Eastern and Central Mongolia. Arid Ecosystems2(1), 18–33. https://doi.org/10.1134/S2079096112010052x

  • Gupta, S. K., Sharma, O. P., Raina, N. S., & Sehgal, S. (2013). Ethno-botanical study of medicinal plants of Paddar valley of Jammu and Kashmir, India. African Journal of Traditional, Complementary and Alternative Medicines, 10(4), 59–65.

    Google Scholar 

  • Hamid, M., Khuroo, A. A., Charles, B., Ahmad, R., Singh, C. P., & Aravind, N. A. (2019). Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. Biodiversity and Conservation, 28(8), 2345–2370. https://doi.org/10.1007/s10531-018-1641-8

    Article  Google Scholar 

  • Hannah, L., Midgley, G. F., & Millar, D. (2002). Climate change-integrated conservation strategies. Global Ecology and Biogeography, 11(6), 485–495. https://doi.org/10.1046/j.1466-822X.2002.00306.x

    Article  Google Scholar 

  • Herrando-Moraira, S., Vitales, D., Nualart, N., Gómez-Bellver, C., Ibáñez, N., Massó, S., & López-Pujol, J. (2020). Global distribution patterns and niche modelling of the invasive Kalanchoe × houghtonii (Crassulaceae). Scientific Reports, 10(1), 1–18. https://doi.org/10.1038/s41598-020-60079-2

    Article  CAS  Google Scholar 

  • Hijmans, R. J., Guarino, L., Cruz, M., & Rojas, E. (2001). Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant genetic resources newsletter, 15–19.

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Huang, P. Y., Xiang, B., Li, Q. J., & Xu, Z. H. (2009). Relationship between Haloxylon ammodendron seedling dynamics and habitat before summer. Journal of Desert Research, 29(1), 87–94.

    Google Scholar 

  • Ickert-Bond, S. M. (2003). Systematics of New World Ephedra L. (Ephedraceae): Integrating morphological and molecular data (Doctoral dissertation, Arizona State University).

  • Ickert‐Bond, S. M., & Renner, S. S. (2016). The Gnetales: Recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times. Journal of Systematics and Evolution54(1), 1–16. https://doi.org/10.1111/jse.12190x

  • IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

  • Koo, K. A., Park, S. U., & Seo, C. (2017). Effects of climate change on the climatic niches of warm-adapted evergreen plants: Expansion or contraction? Forests, 8(12), 500. https://doi.org/10.3390/f8120500

    Article  Google Scholar 

  • Li, J., Fan, G., & He, Y. (2020). Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Science of the Total Environment, 698, 134–141. https://doi.org/10.1016/j.scitotenv.2019.134141x

    Article  Google Scholar 

  • Li, K. Q., Wu, W., Zheng, Y. L., Dai, Y., Mou, L., & Liao, K. (2008). Effect of temperature on physiologic indexes, bulb yielding and total alkaloids contents of Fritillaria cirrhosaZhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica33(16), 1948–1951.

  • Loera, I., Ickert‐Bond, S. M., & Sosa, V. (2017). Pleistocene refugia in the Chihuahuan Desert: The phylogeographic and demographic history of the gymnosperm Ephedra compactaJournal of Biogeography44(12), 2706–2716. https://doi.org/10.1111/jbi.13064

  • Maity, D., & Maiti, G. G. (2007). Wild flowers of Kanchenjunga Biosphere Reserve, Sikkim. Naya Udyog. 121–122.

  • Meena, B., Singh, N., Mahar, K. S., Sharma, Y. K., & Rana, T. S. (2019). Molecular analysis of genetic diversity and population genetic structure in Ephedra foliata: An endemic and threatened plant species of arid and semi-arid regions of India. Physiology and Molecular Biology of Plants25(3), 753–764. https://doi.org/10.1007/s12298-019-00648-6

  • Meena, B., Tiwari, V., Singh, N., Mahar, K. S., Sharma, Y. K., & Rana, T. S. (2016). Estimation of genetic variability and population structure in Ephedra gerardiana Wall. ex Stapf (Ephedraceae): An endangered and endemic high altitude medicinal plant. Agri Gene1, 116–125. https://doi.org/10.1016/j.aggene.2016.08.002

  • Mercado Gómez, J. D., Prieto-Torres, D. A., Gonzalez, M. A., Morales Puentes, M. E., Escalante, T., & Rojas-Soto, O. (2020). Climatic affinities of Neotropical species of Capparaceae: An approach from ecological niche modelling and numerical ecology. Botanical Journal of the Linnean Society, 193(2), 263–275. https://doi.org/10.1093/botlinnean/boz092

    Article  Google Scholar 

  • Merow, C., Smith, M. J., & Silander, J. A., Jr. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069.

    Article  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.

    Article  CAS  Google Scholar 

  • Müller, G. C., Revay, E. E., & Schlein, Y. (2011). Relative attraction of the sand fly Phlebotomus papatasi to local flowering plants in the Dead Sea region. Journal of Vector Ecology, 36, S187–S194. https://doi.org/10.1111/j.1948-7134.2011.00130.x

    Article  Google Scholar 

  • Nameer, P. O. (2020). The expanding distribution of the Indian Peafowl (Pavo cristatus) as an indicator of changing climate in Kerala, southern India: A modelling study using MaxEnt. Ecological Indicators110, 105930. https://doi.org/10.1016/j.ecolind.2019.105930x

  • Nasab, F. K., Mehrabian, A., & Mostafavi, H. (2020). Mapping the current and future distributions of Onosma species endemic to Iran. Journal of Arid Land, 1–15.

  • Panda, R. M., Behera, M. D., & Roy, P. S. (2018). Assessing distributions of two invasive species of contrasting habits in future climate. Journal of Environmental Management, 213, 478–488. https://doi.org/10.1016/j.jenvman.2017.12.053

    Article  Google Scholar 

  • Pearson, R. G., Thuiller, W., Araújo, M. B., Martinez-Meyer, E., Brotons, L., McClean, C., & Lees, D. C. (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33(10), 1704–1711. https://doi.org/10.1111/j.1365-2699.2006.01460x

    Article  Google Scholar 

  • Peterson, M. L., Angert, A. L., & Kay, K. M. (2020). Experimental migration upward in elevation is associated with strong selection on life history traits. Ecology and Evolution, 10(2), 612–625. https://doi.org/10.1002/ece3.5710

    Article  Google Scholar 

  • Phelps, L. N., Broennimann, O., Manning, K., Timpson, A., Jousse, H., Mariethoz, G., & Guisan, A. (2020). Reconstructing the climatic niche breadth of land use for animal production during the African Holocene. Global Ecology and Biogeography, 29(1), 127–147. https://doi.org/10.1111/geb.13015

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Porfirio, L. L., Harris, R. M., Lefroy, E. C., Hugh, S., Gould, S. F., Lee, G., & Mackey, B. (2014). Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE, 9(11), e113749. https://doi.org/10.1371/journal.pone.0113749

    Article  CAS  Google Scholar 

  • Rai, I. D., Singh, G., & Rawat, G. S. (2017). Plants of Kedarnath Wildlife Sanctuary, Western Himalaya: A field guide. Bishen Singh Mahendra Pal Singh. 346.

  • Ray, D., Behera, M. D., & Jacob, J. (2019). Comparing invasiveness of native and non-native species under changing climate in North-East India: Ecological niche modelling with plant types differing in biogeographic origin. Environmental Monitoring and Assessment, 191(3), 1–13. https://doi.org/10.1007/s10661-019-7685-8

    Article  CAS  Google Scholar 

  • Rather, Z. A., Wachkoo, A. A., Khuroo, A. A., & Dar, A. R. (2019). First record of Aspicera hartigi (Hymenoptera, Figitidae) from India, with observations on its foraging behavior on Ephedra plants. Journal of Asia-Pacific Biodiversity12(3), 473–476. https://doi.org/10.1016/j.japb.2019.03.007x

  • Rather, Z. A., Khuroo, A. A., Dar, A. R., & Dar, T. U. H. (2020). Smartphone-integrated field microscopy (SPFM): A low-cost and portable tool to study live biological specimens in the wild. Plant Biosystems-an International Journal Dealing with All Aspects of Plant Biology, 154(5), 757–765. https://doi.org/10.1080/11263504.2019.1686081

    Article  Google Scholar 

  • Rawat, V. S., Rawat, Y. S., & Shah, S. (2010). Indigenous knowledge and sustainable development in the Tones Valley of Garhwal Himalaya. Journal of Medicinal Plants Research, 4(19), 2043–2047. https://doi.org/10.5897/JMPR10.191

    Article  Google Scholar 

  • Rehnus, M., Bollmann, K., Schmatz, D. R., Hackländer, K., & Braunisch, V. (2018). Alpine glacial relict species losing out to climate change: The case of the fragmented mountain hare population (Lepus timidus) in the Alps. Global Change Biology, 24(7), 3236–3253. https://doi.org/10.1111/gcb.14087x

    Article  Google Scholar 

  • Rydin, C., Pedersen, K. R., & Friis, E. M. (2004). On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules. Proceedings of the National Academy of Sciences101(47), 16571–16576. https://doi.org/10.1073/pnas.0407588101

  • Rydin, C., & Korall, P. (2009). Evolutionary relationships in Ephedra (Gnetales), with implications for seed plant phylogeny. International Journal of Plant Sciences, 170(8), 1031–1043. https://doi.org/10.1086/605116

    Article  Google Scholar 

  • Rydin, C., Khodabandeh, A., & Endress, P. K. (2010). The female reproductive unit of Ephedra (Gnetales): Comparative morphology and evolutionary perspectives. Botanical Journal of the Linnean Society, 163(4), 387–430. https://doi.org/10.1111/j.1095-8339.2010.01066.x

    Article  Google Scholar 

  • Samant, S. S., & Pant, S. (2006). Diversity, distribution pattern and conservation status of the plants used in liver diseases/ailments in Indian Himalayan region. Journal of Mountain Science, 3(1), 28–47. https://doi.org/10.1007/s11629-006-0028-6

    Article  Google Scholar 

  • Schellenberger Costa, D., Gerschlauer, F., Kiese, R., Fischer, M., Kleyer, M., & Hemp, A. (2018). Plant niche breadths along environmental gradients and their relationship to plant functional traits. Diversity and Distributions, 24(12), 1869–1882. https://doi.org/10.1111/ddi.12815

    Article  Google Scholar 

  • Segoli, M., Ungar, E. D., Giladi, I., Arnon, A., & Shachak, M. (2012). Untangling the positive and negative effects of shrubs on herbaceous vegetation in drylands. Landscape Ecology, 27(6), 899–910. https://doi.org/10.1007/s10980-012-9736-1x

    Article  Google Scholar 

  • Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PloS one7(5), e36741. https://doi.org/10.1371/journal.pone.0036741x

  • Slatyer, R. A., Hirst, M., & Sexton, J. P. (2013). Niche breadth predicts geographical range size: A general ecological pattern. Ecology Letters, 16(8), 1104–1114.

    Article  Google Scholar 

  • Singer, M. C. (2017). Shifts in time and space interact as climate warms. Proceedings of the National Academy of Sciences, 11(49), 12848–12850.

    Article  Google Scholar 

  • Singh, R., Sharma, P., & Radha, P. (2007). Seed predation and attenuating populations of Ephedra foliata Boiss. India. Phytomorphology, 5(3), 165–170.

    Google Scholar 

  • Sourabh, P., Thakur, J., Sharma, P., Uniyal, P. L., & Pandey, A. K. (2018). Habitat distribution modelling for reintroduction of endangered medicinal plants-Ephedra gerardiana, Lilium polyphyllum, Crepidium acuminatum, Pittosporum eriocarpum and Skimmia anquetilia in India. International Journal of Ecology and Environmental Sciences, 44(2), 207–216.

    Google Scholar 

  • Stubbs, R. L., Soltis, D. E., & Cellinese, N. (2018). The future of cold-adapted plants in changing climates: Micranthes (Saxifragaceae) as a case study. Ecology and Evolution, 8(14), 7164–7177. https://doi.org/10.1002/ece3.4242

    Article  Google Scholar 

  • Sun, N., Cao, G., Li, G., Liu, Z., & Quan, R. C. (2020). Macaca leonina has a wider niche breadth than sympatric M. mulatta in a fragmented tropical forest in southwest China. American Journal of Primatology82(2), e23100. https://doi.org/10.1002/ajp.23100

  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293. https://doi.org/10.1126/science.3287615

    Article  CAS  Google Scholar 

  • Theodoridis, S., Patsiou, T. S., Randin, C., & Conti, E. (2018). Forecasting range shifts of a cold-adapted species under climate change: Are genomic and ecological diversity within species crucial for future resilience? Ecography, 41(8), 1357–1369. https://doi.org/10.1111/ecog.03346

    Article  Google Scholar 

  • Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, 10(23), 8245–8250. https://doi.org/10.1073/pnas.0409902102

    Article  CAS  Google Scholar 

  • Tian, Y., Tashpolat, T., & Li, Y. (2014). Causes of seedling mortality in desert for the small xeric tree Haloxylon ammodendron. Scandinavian Journal of Forest Research, 29(6), 555–564. https://doi.org/10.1080/02827581.2014.935471

    Article  Google Scholar 

  • Wang, L. L., Kakiuchi, N., & Mikage, M. (2010). Studies of Ephedra plants in Asia. Part 6: Geographical changes of anatomical features and alkaloids content of Ephedra sinicaJournal of natural medicines64(1), 63–69. https://doi.org/10.1007/s11418-009-0374-0x

  • Wang, T., Campbell, E. M., O’Neill, G. A., & Aitken, S. N. (2012). Projecting future distributions of ecosystem climate niches: Uncertainties and management applications. Forest Ecology and Management, 279, 128–140. https://doi.org/10.1016/j.foreco.2012.05.034

    Article  Google Scholar 

  • Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142x

    Article  Google Scholar 

  • Whitford, W. G., & Steinberger, Y. (2020). Herbivory effects on Ephedra spp. in the Chihuahuan Desert. Open Journal of Ecology10(2), 37–44. https://doi.org/10.4236/oje.2020.102003x

  • Wiens, J. J., Camacho, A., Goldberg, A., Jezkova, T., Kaplan, M. E., Lambert, S. M., & Walls, R. L. (2019). Climate change, extinction, and Sky Island biogeography in a montane lizard. Molecular Ecology, 28(10), 2610–2624. https://doi.org/10.1111/mec.15073x

    Article  Google Scholar 

  • Xiao, J., Eziz, A., Zhang, H., Wang, Z., Tang, Z., & Fang, J. (2019). Responses of four dominant dryland plant species to climate change in the Junggar Basin, northwest China. Ecology and Evolution, 9(23), 13596–13607. https://doi.org/10.1002/ece3.5817x

    Article  Google Scholar 

  • Yin, H., Yan, X., Zhang, W., Shi, Y., Qian, C., Yin, C., & Ma, X. F. (2016). Geographical or ecological divergence between the parapatric species Ephedra sinica and E. intermedia?. Plant Systematics and Evolution302(8), 1157–1170. https://doi.org/10.1007/s00606-016-1323-5

  • Zhang, B. M., Zhi-Bin, W. A. N. G., Ping, X. I. N., Qiu-Hong, W. A. N. G., He, B. U., & Kuang, H. X. (2018). Phytochemistry and pharmacology of genus Ephedra. Chinese Journal of Natural Medicines, 16(11), 811–828. https://doi.org/10.3724/SP.J.1009.2018.00811x

    Article  Google Scholar 

  • Zhang, K., Yao, L., Meng, J., & Tao, J. (2018). Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634, 1326–1334. https://doi.org/10.1016/j.scitotenv.2018.04.112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Staff of the herbaria mentioned in the manuscript especially curators and assistants are greatly acknowledged for their support. The authors are highly thankful to the two anonymous reviewers and the subject editor for their critical comments and insightful suggestions on earlier version of the manuscript.

Funding

During the course of the present study, financial support was received from SERB-DST (grant no: EMR/2015/000167) and MoEFCC (under AICOPTAX, F. No. 22018/12/2015/RE(Tax), Government of India, New Delhi, to Anzar A. Khuroo.

Author information

Authors and Affiliations

Authors

Contributions

AAK conceived the research idea, supervised the research work and managed fund acquisition; ZAR and AAK collected field and herbarium data; ZAR and RA conducted modelling and data analysis; ZAR and AAK together led the writing of draft manuscript; and all the authors reviewed and approved final draft of the manuscript for submission.

Corresponding author

Correspondence to Zubair Ahmad Rather.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rather, Z.A., Ahmad, R., Dar, A.R. et al. Predicting shifts in distribution range and niche breadth of plant species in contrasting arid environments under climate change. Environ Monit Assess 193, 427 (2021). https://doi.org/10.1007/s10661-021-09160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09160-5

Keywords

Navigation