Skip to main content

Advertisement

Log in

Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Globally, treeline in mountain landscapes is reported to be sensitive to projected warming by climate change. Betula utilis (Himalayan birch), a principal tree species defining the natural treeline in Himalayas, is a potential indicator species to track the signal of climate change. The present study models the ensemble distribution of B. utilis using Biomod2 package for present and future (RCP’s 2.6–8.5 covering 2050 and 2070). The final ensemble model obtained had AUC = 0.886 and TSS = 0.655, thus indicating robustness of the model. We assessed change in the habitat suitability, area expansion and contraction based on ensemble model using SDM Toolbox. The highly suitable area for B. utilis is predicted to shift towards the eastern parts of Himalayas in future, with suitability declining towards the western part of Himalayas. The study, to our best knowledge, for the first time used Ecospat package to assess niche dynamics (i.e. overlap, similarity and equivalency) of B. utilis, which predicted the climatic niche of this treeline species is moderately shifting in future scenarios. Further, the PCA analysis indicated that significant variation (33.45% on PC1 and 24.63% on PC2) exists in the climatic conditions between current and future scenarios. The similarity and equivalency test revealed that B. utilis niche is similar but not identical between current and future climate change scenarios. Hopefully, the results from the present study will contribute significantly in understanding the impacts of climate change in Himalayas with wide implications for scientifically-informed adaptation and mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araujo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:4247

    Article  Google Scholar 

  • Ashburner K, McAllister HA (2013) The Genus Betula: a taxonomic revision of Birches. In: Ashburner K, McAllister HA (eds) Botanical magazine monograph, vol 5. Royal Botanic Gardens, Kew

    Google Scholar 

  • Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Chang Biol 8:390–407

    Article  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Barrett MA, Brown JL, Junge RE, Yoder AD (2013) Climate change, predictive modeling and lemur health: assessing impacts of changing climate on health and conservation in Madagascar. Biol Conserv 157:409–422

    Article  Google Scholar 

  • Benito BM, Martínez-Ortega MM, Muñoz LM, Lorite J, Peñas J (2009) Assessing extinction-risk of endangered plants using species distribution models: a case study of habitat depletion caused by the spread of greenhouses. Biodivers Conserv 18:2509–2520

    Article  Google Scholar 

  • Benito B, Lorite J, Peñas J (2011) Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. Clim Change 108:471–483

    Article  Google Scholar 

  • Bhattacharyya A, Shah SK, Chaudhary V (2006) Would tree-ring data of Betula utilis have potential for the analysis of Himalayan glacial fluctuations. Curr Sci 91:754–761

    Google Scholar 

  • Bobrowski M, Gerlitz L, Schickhoff U (2017) Modelling the potential distribution of Betula utilis in the Himalaya. Glob Ecol Conserv 11:69–83

    Article  Google Scholar 

  • Bohner J, Miehe G, Miehe S, Nagy L (2015) Climate and weather. In: Miehe G, Pendry CA, Chaudhary R (eds) Nepal: an introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden, Edinburgh, pp 23–89

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshean RA, Stone CJ (1984) Classification and regression trees. Chapman and Hall, London

    Google Scholar 

  • Broennimann O, Fitzpatrick MC, Pearman PB et al (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Glob Ecol Biogeogr 21:481–497

    Article  Google Scholar 

  • Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700

    Article  Google Scholar 

  • Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Chang Biol 16:1145–1157

    Article  Google Scholar 

  • Busby JR (1991) BIOCLIM a bioclimate analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Clayton, p 6468

    Google Scholar 

  • Carvalho SB, Brito JC, Crespo EG, Watts ME, Possingham HP (2011) Conservation planning under climate change: toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time. Biol Conserv 144:2020–2030

    Article  Google Scholar 

  • Cassini MH (2011) Ranking threats using species distribution models in the IUCN red list assessment process. Biodivers Conserv 20:3689–3692

    Article  Google Scholar 

  • Dawadi B, Liang E, Tian L, Devkota LP, Yao T (2013) Pre-monsoon precipitation signal in tree rings of timberline Betula utilis in the central Himalayas. Q Int 283:72–77

    Article  Google Scholar 

  • Di Cola V, Broennimann O, Petitpierre B et al (2016) ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40:774–787

    Article  Google Scholar 

  • Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Change Biol 17:990–996

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G (2013) Collinearity: a review of methods to deal with it and a simulation study evalvating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Dullinger S, Gattringer A, Thuiller W et al (2012) Extinction debt of high-mountain plants under twenty-first century climate change. Nat Clim Change 2:619–622

    Article  Google Scholar 

  • Eberhardt E, Dickore WB, Miehe G (2007) Vegetation map of the batura valley (Hunza Karakorum, north Pakistan). Erdkunde 61:93–112

    Article  Google Scholar 

  • Elith JH, Graham C, Anderson R, Dudík M, Ferrier S, Guisan A et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Engler R, Randin C, Thuiller W, Dullinger S (2011) 21st Climate change threatens European mountain flora. Glob Change Biol 17:2330–2341

    Article  Google Scholar 

  • Feeley KJ, Silman MR (2010) Land-use and climate change effects on population size and extinction risk of Andean plants. Glob Change Biol 16:3215–3222

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fordham DA, Akçakaya RH, Araújo MB et al (2012) Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? Glob Change Biol 18:1357–1371

    Article  Google Scholar 

  • Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 19:1141

    Google Scholar 

  • Gaire NP, Bhuju DR, Koirala M (2013) Dendrochronological studies in Nepal: current status and future prospects. FUUAST J Biol 3:1–9

    Google Scholar 

  • GBIF (2018) http://www.gbif.org. Accessed 15 Feb 2018

  • Gillard M, Thiebaut G, Leroy B (2017) Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biol Invasions 19:2159–2170

    Article  Google Scholar 

  • Grenouillet G, Buisson L, Casajus N, Lek S (2011) Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34:9–17

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  PubMed  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Halloy SRP, Mark AF (2003) Climate-change effects on alpine plant biodiversity: a New Zealand perspective on quantifying the threat. Arct Antarct Alp Res 35:248–254

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049

    Article  PubMed  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, New York

    Google Scholar 

  • Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270

    Article  Google Scholar 

  • Hijmans RJ, Cruz M, Rrojas E, Guarino L (2001) DIVA-GIS, version 1.4. A geographic information system for the management and analysis of genetic resources data. Plant Genet Resour Newsl 127:15–19

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:195–204

    Article  Google Scholar 

  • Himalayan Biodiversity Hotspot https://www.cepf.net. Accessed 10 Feb 2018

  • Hof AR, Jansson R, Nilsson C (2012) The usefulness of elevation as a predictor variable in species distribution modelling. Ecol Model 246:86–90

    Article  Google Scholar 

  • Hoffmann RS (2001) The Southern boundary of the Palaerctic Realm in China and adjacent countries. Acta Zool Sin 47:121–131

    Google Scholar 

  • Holtmeier FK (2009) Mountain timberlines—ecology, patchiness and dynamics. In: Beniston M (ed) Advances in global change research, vol 36. Springer, Berlin

    Google Scholar 

  • Huo C, Cheng G, Lu X, Fan J (2010) Simulating the effects of climate change on forest dynamics on Gongga Mountain, Southwest China. J For Res 15:176–185

    Article  Google Scholar 

  • IPCC (2007) In: Core Writing Team, Pachauri RK, Reisinger A (eds) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change IPCC, Geneva, Switzerland

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, p 1535

    Google Scholar 

  • IUCN (2011) Guidelines for using the IUCN Red List categories and criteria. Version 10.1. Prepared by the Standards and Petitions Subcommittee, http://www.iucnredlist.org/documents/RedListGuidelines.pdf. Accessed 10 March 2018

  • Iverson LR, Prasad AM (1998) Predicting abundance of 80 tree species following climate change in the eastern United States. Ecol Monogr 68:465–485

    Article  Google Scholar 

  • Joshi B, Pant SC (2012) Ethnobotanical study of some common plants used among the tribal communities of Kashipur, Uttarakhand. Indian J Nat Prod Resour 3:262–266

    Google Scholar 

  • Joshi M, Charles B, Ravikanth G, Aravind NA (2017) Assigning conservation value and identifying hotspots of endemic rattan diversity in the Western Ghats, India. Plant Divers 39:263–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan JO, New M (2006) Arctic climate change with a 2 °C global warming: timing, climate patterns and vegetation change. Clim Change 79:213–241

    Article  CAS  Google Scholar 

  • Korner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, Berlin

    Book  Google Scholar 

  • Kullman L (1998) Tree-limits and montane forests in the Swedish Scandes: sensitive biomonitors of climate change and variability. Ambio 27:312–321

    Google Scholar 

  • Kumar R, Sahai AK, Kumar KK et al (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90:334–345

    Google Scholar 

  • Lamsal P, Kumar L, Shabani F, Atreya K (2017) The greening of the Himalayas and Tibetan Plateau under climate change. Glob Planet Change 159:77–92

    Article  Google Scholar 

  • Liang E, Dawadi B, Pederson N, Eckstein D (2014) Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology 95:2453–2465

    Article  Google Scholar 

  • Liang E, Wanga Y, Piaoa S et al (2016) Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc Natl Acad Sci 113:4380–4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R et al (2008) Climate change and the future of California’s endemic flora. PLoS ONE 3:2502

    Article  CAS  Google Scholar 

  • Manish K, Telwala Y, Nautiyal DC, Pandit MK (2016) Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from Eastern Himalaya, India. Model Earth Syst Environ 2:1–12

    Article  Google Scholar 

  • Marino J, Bennett M, Cossios D et al (2011) Bioclimatic constraints to Andean cat distribution: a modelling application for rare species. Divers Distrib 17:311–322

    Article  Google Scholar 

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Miehe G (1991) Die Vegetationskarte des Khumbu Himal (Mt. Everest-Südabdachung) Gefügemuster der Vegetation und Probleme der Kar tierung. Erdkunde 45:81–94

    Article  Google Scholar 

  • Miehe G, Pendry CA, Chaudhary R (2015) Nepal: an introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden, Edinburgh

    Google Scholar 

  • Moss RH, Edmond JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  CAS  PubMed  Google Scholar 

  • Ni J (2000) A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Mt Res Dev 20:80–89

    Article  Google Scholar 

  • Nüsser M, Dickore WB (2002) A tangle in the triangle: vegetation map of the eastern Hindukush (Chitral, Northern Pakistan). Erdkunde 56:37–59

    Article  Google Scholar 

  • Oke OA, Thomson KA (2015) Distribution models for mountain plant species: the value of elevation. Ecol Model 301:72–77

    Article  Google Scholar 

  • Paulsen J, Korner C (2014) A climate-based model to predict potential treeline position around the globe. Alp Bot 124(1):12

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pecl GT, Araújo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:9214

    Article  CAS  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG et al (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton

    Book  Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Polunin O, Stainton A (1984) Flowers of the Himalaya. Oxford University Press, New Delhi

    Google Scholar 

  • Profirio LL, Harris RMB et al (2014) Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE 9:113749

    Article  CAS  Google Scholar 

  • Rai ID, Bharti RR, Adhikari BS, Rawat GS (2013) Structure and functioning of timberline vegetation in the Western Himalaya: a case study. In: Ning W, Rawat GS, Joshi S, Ismail M, Sharma E (eds) High-altitude rangelands and their interfaces in the Hindu Kush Himalayas. ICIMOD, Kathmandu, pp 91–106

    Google Scholar 

  • Randin CF, Engler R, Normand S et al (2009) Climate change and plant distribution: local models predict high-elevation persistence. Glob Change Biol 15:1557–1569

    Article  Google Scholar 

  • Ranjitkar S, Luedeling E, Shrestha KK, Guan K, Xu J (2013) Flowering phenology of tree rhododendron along an elevation gradient in two sites in the Eastern Himalayas. Int J Biometeorol 57:225–240

    Article  PubMed  Google Scholar 

  • Ranjitkar S, Kindt R, Sujakhua NM et al (2014) Separation of the bioclimatic spaces of Himalayan tree rhododendron species predicted by ensemble suitability models. Glob Ecol Conserv 1:2–12

    Article  Google Scholar 

  • Rashid I, Jayaraman M, Sharma J et al (2015) Projected climate change impacts on vegetation distribution over Kashmir Himalayas. Clim Change 132:601–613

    Article  Google Scholar 

  • Ray R, Ramachandra TV (2017) Optimization of ensemble modeling approach for studying climate niche and conservation status assessment for endemic Taxa. Int J Ecol Dev 32:248–251

    Google Scholar 

  • Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181

    Google Scholar 

  • Ripley BD (1996) Neural networks and pattern recognition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ruiz D, Moreno HA, Gutiérrez ME, Zapata PA (2008) Changing climate and endangered high mountain ecosystems in Colombia. Sci Total Environ 398:122–132

    Article  CAS  PubMed  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants: response and adaptation to freezing stress. Springer, Berlin

    Book  Google Scholar 

  • Sarma K, Kumar A, Krishna M, Medhi M, Tripathi OP (2015) Predicting suitable habitats for the vulnerable Eastern Hoolock Gibbon, Hoolock leuconedys, in India Using the MaxEnt Model. Folia Primatol 86:387–397

    Article  Google Scholar 

  • Schibalski A, Lehtonen A, Schroder B (2014) Climate change shifts environmental space and limit transferability of treeline models. Ecography 37:321–335

    Article  Google Scholar 

  • Schickhoff U (1993) Das Kaghan-Tal im Westhimalaya (Pakistan). Studien zur landschaftsokologischen Differenzierung und zum Landschaftswandel mit vegetationskundlichem Ansatz. In: Schickhoff U (ed) Bonner Geographische Abhandlungen, vol 87. Dümmlers, Bonn

    Google Scholar 

  • Schickhoff U (1994) Die Verbreitung der Vegetation im Kaghan-Tal (West Himalaya, Pakistan) und ihre kartographische Darstellung im Maßstab. Erdkunde 48:92–110

    Article  Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalaya, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broll G, Keplin B (eds) Mountain ecosystems-studies in treeline ecology. Springer, Berlin, pp 275–354

    Chapter  Google Scholar 

  • Schickhoff U, Bobrowski M, Jürgen Bohner J et al (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn 6:245–265

    Article  Google Scholar 

  • Schickhoff U, Bobrowski M, Bohner J et al (2016) Climate change and treeline dynamics in the Himalaya. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the himalaya. Springer, Cham, pp 271–306

    Google Scholar 

  • Schweinfurth U (1957) Die horizontale und vertikale Verbreitung der Vegetation im Himalaya. In: Schweinfurth U (ed) Bonner Geographische Abhandlungen, vol 20. Dümmlers, Bonn

    Google Scholar 

  • Shekhar M, Bhardwaj A, Singh S et al (2017) Himalayan glaciers experienced significant mass loss during later phases of little ice age. Sci Rep 7:10305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Clim 12:2775–2786

    Article  Google Scholar 

  • Shrestha BB, Ghimire B, Lekhak HD, Jha PK (2007) Regeneration of treeline birch (Betula utilis D. Don) forest in a Trans-Himalayan dry valley in Central Nepal. Mt Res Dev 27:259–267

    Article  Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 7:36741

    Article  CAS  Google Scholar 

  • Silva RS, Alves P, Honrado J, Lomba A (2014) Improving the assessment and reporting on rare and endangered species through species distribution models. Glob Ecol Conserv 2:226–237

    Article  Google Scholar 

  • Singh CP, Panigrahy S, Thapliyal A, Kimothi MM, Soni P, Parihar JS (2012) Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Curr Sci 12:559–562

    Google Scholar 

  • Singh CP, Panigrahy S, Parihar JS, Dharaiya N (2013) Modeling environmental niche of Himalayan birch and remote sensing based vicarious validation. Trop Ecol 54:321–329

    Google Scholar 

  • Song M, Zhou C, Ouyang H (2004) Distributions of dominant tree species on the Tibetan Plateau under current and future climate scenarios. Mt Res Dev 24:166–173

    Article  Google Scholar 

  • Stanton JC, Pearson RG, Horning N, Ersts P, Akcakaya HR (2012) Combining static and dynamic variables in species distribution models under climate change. Methods Ecol Evol 3:349–357

    Article  Google Scholar 

  • Swets JA (1998) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase Suwal in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8:57103

    Article  CAS  Google Scholar 

  • Tenca A, Carrer M (2010) Growth climate response at high elevation: comparing Alps and Himalayas. In: Levanic T, Gricar J, Hafner P (eds) TRACE—tree rings in archaeology, climatology and ecology, vol 8. GFZ Potsdam, Potsdam, pp 89–97

    Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027

    Article  Google Scholar 

  • Thuiller W, Richardson DM, PyŠEk P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:234–250

    Article  Google Scholar 

  • Thuiller W, Cade B, Engler R, Araújo MB (2009) BIOMOD a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R (2016) Ensemble platform for species distribution modeling package biomod2 version3.3 https://CRAN.Rproject.org/package=biomod2. Accessed 25 Feb 2018

  • Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947

    Article  Google Scholar 

  • Tovar C, Arnillas CA, Cuesta F, Buytaert W (2013) Diverging responses of tropical Andean biomes under future climate conditions. PLoS ONE 8:1–12

    Article  CAS  Google Scholar 

  • Troll C (1939) Das Pflanzenkleid des Nanga Parbat. Begleitworte zur Vegetationskarte der Nanga-Parbat-Gruppe (Nordwest-Himalaja). Wissen-schaftliche Veroffentlichungen des Deutschen Museums für Lnderkunde zu Leipzig NF, pp. 151–193

  • Troll C (1972) The three dimensional zonation of the Himalayan system. In: Troll C (ed) Geoecology of the high-mountain regions of Eurasia. Erdwissenschaftliche Forsching, vol IV. Franz Steiner Verlag, Wiesbaden, pp 264–275

    Google Scholar 

  • Van de Ven CM, Weiss SB, Ernst WG (2007) Plant species distributions under present conditions and forecasted for warmer climates in an arid mountain range. Earth Interact 11:1–33

    Google Scholar 

  • Vetaas OR (2002) Realized and potential climate niches: a comparison of four Rhododendron tree species. J Biogeogr 29:545–554

    Article  Google Scholar 

  • Wangda P, Ohsawa M (2006) Structure and regeneration dynamics of dominant tree species along altitudinal gradient in dry valley slopes of the Bhutan Himalaya. For Ecol Manag 230:136–150

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

  • Xiaodan W, Genwei C, Xianghao Z (2011) Assessing potential impacts of climatic change on subalpine forests on the eastern Tibetan Plateau. Clim Change 108:225–241

    Article  Google Scholar 

  • Xu J et al (2007) The melting Himalayas: regional challenges and local impacts of climate change on mountain ecosystems and livelihoods. ICIMOD, Kathmandu

    Google Scholar 

  • Xu J, Shrestha A, Vaidya R, Eriksson M, Hewitt K (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity and livelihoods. Conserv Biol 23:520–530

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Piao S, Wang X, Chen A, Ciais P, Myneni RB (2012) Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades. Environ Res Lett 7(1):9

    Article  CAS  Google Scholar 

  • Zhao D, Wu S, Yin Y, Yin ZY (2011) Vegetation distribution on Tibetan Plateau under climate change scenario. Reg Environ Change 11:905–915

    Article  Google Scholar 

  • Zobel DB, Singh SP (1997) Himalayan forests and ecological generalizations. Bioscience 47:735–745

    Article  Google Scholar 

  • Zurick D, Pacheco J (2006) Illustrated atlas of the Himalayas. The University Press of Kentuchy, Lexington

    Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Head Department of Botany, University of Kashmir for providing necessary facilities during the course of present study. We also express our gratitude to the kind help rendered by the scholars and supporting staff of Centre for Biodiversity and Taxonomy, University of Kashmir who accompanied us on numerous field trips. We would also like to thank various herbaria, mentioned in the manuscript, for providing access to their collections. Additionally, financial support provided by Space Applications Centre (SAC)-ISRO Ahmedabad under HIMADRI and MoEFCC, Govt of India, New Delhi under AICOPTAX Scheme (F. No.22018/12/2015/RE(Tax) to Anzar A Khuroo is greatly acknowledged. We are highly thankful to esteemed reviewers and Guest Editor Special Issue on “Biodiversity & Climate Change: An Indian Perspective” for their critical comments which has helped in improving quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anzar A. Khuroo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by D Behera, K Behera and Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, M., Khuroo, A.A., Charles, B. et al. Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. Biodivers Conserv 28, 2345–2370 (2019). https://doi.org/10.1007/s10531-018-1641-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1641-8

Keywords

Navigation