Skip to main content

Advertisement

Log in

Flowering phenology of tree rhododendron along an elevation gradient in two sites in the Eastern Himalayas

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Flowering phenology of tree rhododendron (Rhododendron arboreum Sm.) was monitored in situ along elevation gradients in two distinct ecological settings. Observations were carried out in Gaoligong Nature Reserve (GNR) in China and in the Kanchenjunga Conservation Area (KCA) in Nepal. Using the crown density method, flowering events of the selected species were recorded. Flowering duration and synchrony were determined within each site and along the elevation gradient in each study area. Our observations showed high synchrony throughout the elevation gradient, especially for peak flowering. Mean 15-day soil temperature, soil parameters (soil moisture, nitrogen, organic matter and pH), age of the observed trees, and site characteristics (litter cover, canopy cover, inclination) were related to mean initial and peak flowering dates using partial least squares regression (PLS). Results differed between the two sites, but winter temperature was the most important variable affecting the regression model for both initial flowering and peak flowering at both sites. After temperature, soil moisture was the most important variable for explaining initial flowering dates. The distribution of tree rhododendron indicates that it is able to grow in a wide range of habitats with different environmental conditions. The recent trend of rising winter-spring temperature and the detected bloom-advancing effect of high temperatures during this period suggest that tree rhododendron might expand its distributional range in response to global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Augspurger CK (1981) Reproductive synchrony of a tropical shrub, experimental studies on effects of pollinators and seed predators on Hybantus prunifolius (Violaceae). Ecology 63:775–788

    Article  Google Scholar 

  • Barry RG (1992) Mountain weather and climate, 2nd edn. Routledge, London and New York, p 246

  • Bertiller MB, Irisarri MP, Ares JO (1990) Phenology of Festuca pallescens in relation to topography in North-western Patagonia. J Veg Sci 1:579–584

    Article  Google Scholar 

  • Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135:126–146. doi:10.3159/07-RP-035R.1

    Article  Google Scholar 

  • Blake J, Harris GP (1960) Effects of nitrogen nutrition on flowering in carnation. Ann Bot 24:247–256

    Google Scholar 

  • Chamberlain DF (1982) A revision of Rhododendron II. Subgenus Hymenanthes. Notes Roy Bot Gard Edinb 39:328–332

    Google Scholar 

  • Chudinova SM, Frauenfeld OW, Barry RG et al (2006) Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia. J Geophys Res 111:F02008. doi:10.1029/2005JF000342

    Article  Google Scholar 

  • Crimmins TM, Crimmins MA, David Bertelsen C (2009) Flowering range changes across an elevation gradient in response to warming summer temperatures. Glob Chang Biol 15:1141–1152. doi:10.1111/j.1365-2486.2008.01831.x

    Article  Google Scholar 

  • Dahlgren JP, von Zeipel H, Ehrlen J (2007) Variation in vegetative and flowering phenology in a forest herb caused by environmental heterogeneity. Am J Bot 94:1570–1576

    Article  Google Scholar 

  • Dornhaus A, Chittka L (2004) Why do honey bees dance? Behav Ecol Sociobiol 55:395–401. doi:10.1007/s00265-003-0726-9

    Article  Google Scholar 

  • Du M, Kawashima S, Yonemura S, et al (2007) Temperature distribution in the high mountain regions on the Tibetan Plateau—measurement and simulation. Proceeding of the MODSIM 2007 International congress on modelling and simulation. Modelling and Simulation Society of Australia and New Zealand, pp 2146–2152

  • Fageria NK, Zimmermann FJP (1998) Influence of pH on growth and nutrient uptake by crop species in an Oxisol. Commun Soil Sci Plan 29:2675–2682. doi:10.1080/00103629809370142

    Article  CAS  Google Scholar 

  • Fang J-Y, Yoda K (1988) Climate and vegetation in China (I) changes in the altitudinal lapse rate of temperature and distribution of sea level temperature. Ecol Res 3:37–51

    Article  Google Scholar 

  • Fang M, Fang R, He M, et al (2005) Ericaceae A. L. Jussieu. Flora of China, vol 14 (Apiaceae through Ericaceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis

  • Fielding CS, Whittaker JB, Butterfield JEL, Coulson JC (1999) Predicting responses to climate change: the effect of altitude and latitude on the phenology of the spittlebug Neophilaenus lineatus. Funct Ecol 13:65–73

    Article  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691. doi:10.1126/science.1071617

    Article  CAS  Google Scholar 

  • Gao JF, Ma KM, Feng ZW et al (2009) Coupling effects of altitude and human disturbance on landscape and plant diversity in the vicinity of mountain villages of Beijing, China. Acta Ecol Sin 29:56–61. doi:10.1016/j.chnaes.2009.04.010

    Article  Google Scholar 

  • Giménez-Benavides L, Escudero A, Iriondo JM (2007) Reproductive limits of a late-flowering high-mountain Mediterranean plant along an elevational climate gradient. New Phytol 173:367–382. doi:10.1111/j.1469-8137.2006.01932.x

    Article  Google Scholar 

  • GoN (2008) District profile, Taplejung (in Nepali)

  • Hladyz S, Kajsa Å, Chauvet E et al (2011) Stream ecosystem functioning in an agricultural landscape: the importance of terrestrial–aquatic linkages. Adv Ecol Res 44:211–276. doi:10.1016/B978-0-12-374794-5.00004-3

    Article  Google Scholar 

  • Ibanez I, Primack RB, Miller-Rushing AJ et al (2010) Forecasting phenology under global warming. Phil Trans R Soc B 365:3247–3260. doi:10.1098/rstb.2010.0120

    Article  Google Scholar 

  • Inouye DW, Wielgolaski FE (2003) High altitude climates. In: Schwartz MD (ed) Phenology: An integrative environmental science. Kluwer Academic Publishers, pp 195–214

  • IPCC (2007) Summary for policymakers. In: Climate change 2007: The physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, p 18

  • Jackson LE, Bliss LC (1984) Phenology and water relations of three plant life forms in a dry tree-line meadow. Ecology 65:1302. doi:10.2307/1938335

    Article  Google Scholar 

  • Johansen C, Waseque M, Begum S (1985) Effect and interaction of photoperiod, temperature, water stress and nitrogen on flowering and growth in jute. Field Crop Res 12:397–406

    Article  Google Scholar 

  • Joiner JN, Gruis JT (1959) Effects of nitrogen and potassium levels on growth, flowering and chemical composition of Zinnia and marigold. J Am Soc Hortic Sci 74:445–447

    Google Scholar 

  • Kalbarczyk R (2009) Air temperature changes and phenological phases of field cucumber (Cucumis sativus L.) in Poland, 1966–2005. Hortic Sci 36:75–83

    Google Scholar 

  • Koelmeyer K (1959) The periodicity of leaf change and flowering in the principal forest communities of Ceylon. Ceylon For 4:157–189

    Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystem, 2nd ed. Springer, New York, p 344

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

    Article  Google Scholar 

  • Kudo G, Nishikawa Y, Kasagi T, Kosuge S (2004) Does seed production of spring ephemerals decrease when spring comes early? Ecol Res 19:255–259

    Article  Google Scholar 

  • Kudo G, Ida TY, Tani T (2008) Linkage between phenology, pollination, photosynthesis and reproduction in deciduous forest understory plants. Ecology 89:321–331

    Article  Google Scholar 

  • Li R (2003) A floristic study on the seed plants of the northern Gaoligong mountains in Western Yunnan, China. PhD Dissertation, Kunming Institute of Botany, Chinese Academy of Sciences

  • Lucier AA, Hinckley TM (1982) Phenology, growth and water relations of irrigated and non-irrigated black walnut. For Ecol Manag 4:127–142

    Article  Google Scholar 

  • Luedeling E, Gassner A (2012) Partial least squares regression for analyzing walnut phenology in California. Agr For Meteorol 158:43–52. doi:10.1016/j.agrformet.2011.10.020

    Article  Google Scholar 

  • Luedeling E, Girvetz EH, Semenov MA, Brown PH (2011) Climate change affects winter chill for temperate fruit and nut trees. PLoS One 6:e20155. doi:10.1371/journal.pone.0020155

    Article  CAS  Google Scholar 

  • Ma Q, Longnecker N, Dracup M (1997) Nitrogen deficiency slows leaf development and delays flowering in narrow-leafed Lupin. Ann Bot 79:403–409. doi:10.1006/anbo.1996.0361

    Article  Google Scholar 

  • Macdonald M (2003) Bumblebees. Scottish Natural Heritage Design and Publications, Battleby

  • Menzel A, Estrella N, Testka A (2005) Temperature response rates from long-term phenological records. Clim Res 30:21–28. doi:10.3354/cr030021

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. doi:10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89:332–41

    Article  Google Scholar 

  • Min BM (2000) Comparison of phenological characteristics for several woody plants in urban climates. J Plant Biol 43:10–17. doi:10.1007/BF03031030

    Article  Google Scholar 

  • Nokels L, Fahmy T, Crochemore S (2010) Interpretation of the preferences of automotive customers applied to air conditioning supports by combining GPA and PLS regression. In: Esposito Vinzi V, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares: Concepts, methods and applications. Springer, Heidelberg, Berlin, pp 775–789

    Chapter  Google Scholar 

  • Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60:1927–1937

    Article  CAS  Google Scholar 

  • Osborne JL, Clark SJ, Morris RJ et al (1999) A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J Appl Ecol 36:519–533

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  CAS  Google Scholar 

  • Primack RB, Miller-Rushing AJ (2011) Commentary broadening the study of phenology and climate change. New Phytol 191:307–309

    Article  Google Scholar 

  • Putman R, Wratten SD (1984) Principles of ecology. University of California Press

  • Robbirt KM, Davy AJ, Hutchings MJ, Roberts DL (2010) Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J Ecol 99:235–241. doi:10.1111/j.1365-2745.2010.01727.x

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi:10.1038/nature01309.1

    Article  CAS  Google Scholar 

  • Rusch VE (1993) Altitudinal variation in the phenology of Nothophagus pumilio in Argentina. Rev Chil Hist Nat 66:131–141

    Google Scholar 

  • Sato Y, Kumagai T, Kume A et al (2004) Experimental analysis of moisture dynamics of litter layers—the effects of rainfall conditions and leaf shapes. Hydrol Process 18:3007–3018. doi:10.1002/hyp. 5746

    Article  Google Scholar 

  • Scopel E, Silva FAMD, Corbeels M et al (2004) Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24:383–395. doi:10.1051/agro

    Article  Google Scholar 

  • Seghieri J, Vescovo A, Padel K et al (2009) Relationships between climate, soil moisture and phenology of the woody cover in two sites located along the West African latitudinal gradient. J Hydrol 375:78–89. doi:10.1016/j.jhydrol.2009.01.023

    Article  Google Scholar 

  • Sekar KC (2010) Rhododendrons in Indian Himalayan region: diversity and conservation. Am J Plant Sci 01:131–137. doi:10.4236/ajps.2010.12017

    Article  Google Scholar 

  • Sharp RG, Else MA, Cameron RW, Davies WJ (2009) Water deficits promote flowering in Rhododendron via regulation of pre and post initiation development. Sci Hortic 120:511–517. doi:10.1016/j.scienta.2008.12.008

    Article  Google Scholar 

  • Shrestha AB (2009) Climate change in the Himalayas. Information sheet #3/09. International Centre for Integrated Mountain Development, Kathmandu, Nepal, p 4

  • Singh KK, Rai LK, Gurung B (2009) Conservation of rhododendrons in Sikkim Himalaya: an overview. World J Agric Sci 5:284–296

    Google Scholar 

  • Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87

    Article  CAS  Google Scholar 

  • Stinson KA (2004) Natural selection favors rapid reproductive phenology in Potentilla pulchrrima (Rosaceae) at opposite ends of a subalpine snowmelt gradient. Am J Bot 91:531–539

    Article  Google Scholar 

  • Tenenhaus M, Pages J, Ambroisine L, Guinot C (2005) PLS methodology to study relationships between hedonic judgements and product characteristics. Food Qual Prefer 16:315–325. doi:10.1016/j.foodqual.2004.05.013

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Whittaker ARH, Niering WA (1975) Vegetation of the Santa Catalina mountains, Arizona. V. biomass, production, and diversity along the elevation gradient. Ecology 56:771–790

    Article  Google Scholar 

  • Wielgolaski FE (2001) Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45:196–202

    Article  CAS  Google Scholar 

  • Wold S (1995) PLS for multivariate linear modeling. In: van der Waterbeemd H (ed) Chemometric methods in molecular design: methods and principles in medicinal chemistry. Verlag-Chemie, Weinheim, pp 195–218

    Google Scholar 

  • Yelemou B, Zougmore R, Bationo BA et al (2009) Phenology and fruit production of Piliostigma reticulatum (DC), Hochst., an agroforestry forage species in the Sahel. Cm J Exp Biol 5:10–20

    Google Scholar 

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. P Natl Acad Sci USA 107:22151–6. doi:10.1073/pnas.1012490107

    Article  CAS  Google Scholar 

  • Ziello C, Estrella N, Kostova M et al (2009) Influence of altitude on phenology of selected plant species in the alpine region (1971–2000). Clim Res 39:227–234. doi:10.3354/cr00822

    Article  Google Scholar 

Download references

Acknowledgments

Field research was funded by The Rufford Small Grant Foundation, UK (Grant 45.10.09), the International Centre for Integrated Mountain Development, Nepal (Ref. no. PIN100289), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant KSCX2-YW-Z-1019), as well as CGIAR Research Program 6 on Forests, Trees and Agroforestry. Tree cores were analyzed at the Ecological station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchu Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjitkar, S., Luedeling, E., Shrestha, K.K. et al. Flowering phenology of tree rhododendron along an elevation gradient in two sites in the Eastern Himalayas. Int J Biometeorol 57, 225–240 (2013). https://doi.org/10.1007/s00484-012-0548-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-012-0548-4

Keywords

Navigation