Skip to main content
Log in

Constrained Mixture Models of Soft Tissue Growth and Remodeling – Twenty Years After

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable; review article.

References

  1. Humphrey, J.D.: Continuum biomechanics of soft biological tissues. Proc. R. Soc. A 459, 3–46 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Hsu, F-H.: The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1, 303–311 (1968)

    Article  Google Scholar 

  3. Cowin, S.C., Hegedus, D.H.: Bone remodeling I: theory of adaptive elasticity. J. Elast. 6, 313–326 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Skalak, R.: Gowth as a finite displacement field. In: Proceed IUTAM Symposium Finite Elasticity, pp. 347–355 (1981)

    Chapter  Google Scholar 

  5. Rodriguez, J., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

    Article  Google Scholar 

  6. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12, 407–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fung, Y.C.: What are residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19, 237–249 (1991)

    Article  Google Scholar 

  8. Humphrey, J.D.: Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50, 53–78 (2008)

    Article  Google Scholar 

  9. Humphrey, J.D.: Remodeling of a collagenous tissue at fixed lengths. J. Biomech. Eng. 121, 591–597 (1999)

    Article  Google Scholar 

  10. Bellini, C., Ferruzzi, J., Roccabianca, S., DiMartino, E., Humphrey, J.D.: A microstructurally-motivated model of arterial wall mechanics with mechanobiological implications. Ann. Biomed. Eng. 42, 488–502 (2014)

    Article  Google Scholar 

  11. Cardamone, L., Valentin, A., Eberth, J.F., Humphrey, J.D.: Origin of axial prestress and residual stress in arteries. Biomech. Model. Mechanobiol. 8, 431–446 (2009)

    Article  Google Scholar 

  12. Humphrey, J.D.: Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer, New York (2002)

    Book  Google Scholar 

  13. Baek, S., Rajagopal, K.R., Humphrey, J.D.: A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128, 142–149 (2006)

    Article  Google Scholar 

  14. Valentin, A., Cardamone, L., Baek, S., Humphrey, J.D.: Complementary vasoactivity and matrix remodeling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6, 293–306 (2009)

    Article  Google Scholar 

  15. Latorre, M., Humphrey, J.D.: A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues. Z. Angew. Math. Mech. 98, 2048–2071 (2018)

    Article  MathSciNet  Google Scholar 

  16. Wagneseil, J.E., Mecham, R.P.: Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89, 957–989 (2009)

    Article  Google Scholar 

  17. Dajnowiec, D., Langille, B.L.: Arterial adaptations to chronic changes in haemodynamic function: coupling vasomotor tone to structural remodelling. Clin. Sci. (Lond.) 113, 15–23 (2007)

    Article  Google Scholar 

  18. Hayashi, K., Naiki, T.: Adaptation and remodeling of vascular wall; biomechanical response to hypertension. J. Mech. Behav. Biomed. Mater. 2, 3–19 (2009)

    Article  Google Scholar 

  19. Gleason, R.L., Taber, L.A., Humphrey, J.D.: A 2-D model of flow-induced alterations in the geometry, structure and properties of carotid arteries. J. Biomech. Eng. 126, 371–381 (2004)

    Article  Google Scholar 

  20. Gleason, R.L., Humphrey, J.D.: A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J. Vasc. Res. 41, 352–363 (2004)

    Article  Google Scholar 

  21. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for arterial adaptations to a sustained step-change in blood flow. Biomech. Model. Mechanobiol. 2, 109–126 (2003)

    Article  Google Scholar 

  22. Rodbard, S.: Vascular caliber. Cardiology 60, 4–49 (1975)

    Article  Google Scholar 

  23. Humphrey, J.D., Taylor, C.A.: Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10, 221–246 (2008)

    Article  Google Scholar 

  24. Humphrey, J.D., Holzapfel, G.A.: Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45, 805–814 (2012)

    Article  Google Scholar 

  25. Humphrey, J.D., Tellides, G.: Central artery stiffness and thoracic aortopathy. Am. J. Physiol. 316, H169–182 (2019)

    Google Scholar 

  26. Baek, S., Rajagopal, K.R., Humphrey, J.D.: Competition between radial expansion and thickening in the enlargement of an intracranial saccular aneurysm. J. Elast. 80, 13–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Watton, P.N., Hill, N.A., Heil, M.: A mathematical model for the growth of the abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 3, 98–113 (2004)

    Article  Google Scholar 

  28. Wilson, J.S., Baek, S., Humphrey, J.D.: Importance of initial aortic properties on the evolving regional anisotropy, stiffness, and wall thickness of human abdominal aortic aneurysms. J. R. Soc. Interface 9, 2047–2058 (2012)

    Article  Google Scholar 

  29. Wilson, J.S., Humphrey, J.D.: Evolving anisotropy resulting from elastolytic insults in abdominal aortic aneurysms: potential clinical relevance? J. Biomech. 47, 2995–3002 (2014)

    Article  Google Scholar 

  30. Wilson, J.S., Baek, S., Humphrey, J.D.: Parametric study of effects of collagen turnover in human abdominal aortic aneurysms. Proc. R. Soc. A 469, 20120556 (2013)

    Article  MATH  ADS  Google Scholar 

  31. Maegdefessel, L., Azuma, J., Toh, R., et al.: Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J. Clin. Invest. 122, 497–506 (2012)

    Article  Google Scholar 

  32. Cyron, C., Wilson, J.S., Humphrey, J.D.: Mechanobiological stability: a new paradigm to understand the enlargement of aneurysms. J. R. Soc. Interface 11, 20140680 (2014)

    Article  Google Scholar 

  33. Humphrey, J.D., Tellides, G., Schwartz, M.A., Milewicz, D.M.: Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ. Res. 116, 1448–1461 (2015)

    Article  Google Scholar 

  34. Milewicz, D.M., Trybus, K.M., Guo, D-C., Sweeney, H.L., Regalado, E., Kamm, K., Stull, J.T.: Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arterioscler. Thromb. Vasc. Biol. 37, 26–34 (2017)

    Article  Google Scholar 

  35. Latorre, M., Humphrey, J.D.: Numerical knockouts – in silico assessment of factors predisposing to thoracic aortic aneurysm. PLoS Computational Biol. ePub ahead of print (2020)

  36. Schriefl, A., Collins, M.J., Holzapfel, G.A., Niklason, L.E., Humphrey, J.D.: Remodeling of thrombus and collagen in an Ang-II infusion ApoE-/- model of dissecting aortic aneurysms. Thromb. Res. 130, e139–146 (2012)

    Article  Google Scholar 

  37. Karsaj, I., Humphrey, J.D.: A mathematical model of evolving mechanical properties of intraluminal thrombus. Biorheology 46, 509–527 (2009)

    Article  Google Scholar 

  38. Rausch, M., Humphrey, J.D.: A computational model of the biochemomechanics of an evolving occlusive thrombus. J. Elast. 129, 125–144 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ateshian, G.A.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6, 423–445 (2007)

    Article  Google Scholar 

  40. Nims, R.J., Ateshian, G.A.: Reactive constrained mixtures for modeling the solid matrix of biological tissues. J. Elast. 129, 69–105 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Humphrey, J.D., Baek, S., Niklason, L.E.: Biochemomechanics of cerebral vasospasm and its resolution: I. A new hypothesis and theoretical framework. Ann. Biomed. Eng. 35, 1485–1497 (2007)

    Article  Google Scholar 

  42. Baek, S., Valentin, A., Humphrey, J.D.: Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations. Ann. Biomed. Eng. 35, 1498–1509 (2007)

    Article  Google Scholar 

  43. Vorp, D.A.: Biomechanics of abdominal aortic aneurysm. J. Biomech. 40, 1887–1902 (2007)

    Article  Google Scholar 

  44. Di Achille, P., Tellides, G., Figueroa, C.A., Humphrey, J.D.: A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc. R. Soc. Lond. A 470, 20140163 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Di Achille, P., Tellides, G., Humphrey, J.D.: Hemodynamics-driven deposition of intraluminal thrombus in abdominal aortic aneurysms. Int. J. Numer. Methods Biomed. Eng. 33, e2828 (2017)

    Article  MathSciNet  Google Scholar 

  46. Virag, L., Wilson, J.S., Humphrey, J.D., Karsaj, I.: A computational model of biochemomechanical effects of intraluminal thrombus on the enlargement of abdominal aortic aneurysms. Ann. Biomed. Eng. 43, 2852–2867 (2015)

    Article  Google Scholar 

  47. Virag, L., Wilson, J.S., Humphrey, J.D., Karsaj, I.: Potential biomechanical roles of risk factors in the evolution of thrombus-laden abdominal aortic aneurysms. Int. J. Numer. Methods Biomed. Eng. 33, e2893 (2017)

    Article  MathSciNet  Google Scholar 

  48. Ramachandra, A.B., Sankaran, S., Humphrey, J.D., Marsden, A.L.: Computational simulation of the adaptive capacity of vein grafts in response to increased pressure. J. Biomech. Eng. 137, 0310091 (2015)

    Article  Google Scholar 

  49. Ramachandra, A.B., Humphrey, J.D., Marsden, A.L.: Gradual loading ameliorates maladaptation in computational simulations of vein growth and remodeling. J. R. Soc. Interface 14, 20160995 (2017)

    Article  Google Scholar 

  50. Sankaran, S., Humphrey, J.D., Marsden, A.L.: Optimization and parameter sensitivity analysis for arterial growth and remodeling computations. Comput. Methods Appl. Mech. Eng. 256, 200–210 (2013)

    Article  MATH  ADS  Google Scholar 

  51. Ramachandra, A., Latorre, M., Szafron, J., Marsden, A.L., Humphrey, J.D.: Vascular adaptation in the presence of an external support – a modeling study. J. Mech. Behav. Biomed. Mater. 110, 103943 (2020)

    Article  Google Scholar 

  52. Valentin, A., Humphrey, J.D., Holzapfel, G.A.: A multi-layered computational model of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic aging. Ann. Biomed. Eng. 39, 2027–2045 (2011)

    Article  Google Scholar 

  53. Humphrey, J.D., Harrison, D.G., Figueroa, C.A., Lacolley, P., Laurent, S.: Central artery stiffness in hypertension and aging: a problem with cause and consequence. Circ. Res. 118, 379–381 (2016)

    Article  Google Scholar 

  54. Morris, S.A.: Arterial tortuosity in genetic arteriopathies. Curr. Opin. Cardiol. 30, 587–593 (2015)

    Article  Google Scholar 

  55. Ciurică, S., Lopez-Sublet, M., Loeys, B.L., Radhouani, I., Natarajan, N., Vikkula, M., Maas, A.H., Adlam, D., Persu, A.: Arterial tortuosity: novel implications for an old phenotype. Hypertension 73, 951–960 (2019)

    Article  Google Scholar 

  56. Han, H-C., Chesnutt, J.K., Garcia, J.R., Liu, Q., Wen, Q.: Artery buckling: new phenotypes, models, and applications. Ann. Biomed. Eng. 41, 1399–1410 (2013)

    Article  Google Scholar 

  57. Weiss, D., Cavinato, C., Gray, A., Ramachandra, A.B., Avril, S., Humphrey, J.D., Latorre, M.: Mechanics-driven mechanobiological mechanisms of arterial tortuosity. Sci. Adv. 6, eabd3574 (2020)

    Article  ADS  Google Scholar 

  58. Libby, P.: Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 2045–2051 (2012)

    Article  Google Scholar 

  59. Jagadesham, V.P., et al.: Abdominal aortic aneurysms: an autoimmune disease? Trends Mol. Med. 14, 522–529 (2008)

    Article  Google Scholar 

  60. Chalouhi, N., et al.: Biology of intracranial aneurysms: role of inflammation. J. Cereb. Blood Flow Metab. 32, 1659–1676 (2012)

    Article  Google Scholar 

  61. Dorfmuller, P., et al.: Inflammation in pulmonary arterial hypertension. Eur. Respir. J. 22, 358–363 (2003)

    Article  Google Scholar 

  62. Mahmud, A., Freely, J.: Arterial stiffness is related to systemic inflammation in essential hypertension. Hypertension 46, 1118–1122 (2005)

    Article  Google Scholar 

  63. Wang, M., Zhang, J., Jiang, L.Q., Spinetti, G., Pintus, G., Monticone, R., Kolodgie, F.D., Virmani, R., Lakatta, E.G.: Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension 50, 219–227 (2007)

    Article  Google Scholar 

  64. Soares, A.G., et al.: Obesity induces artery-specific alterations: evaluation of vascular function and inflammatory and smooth muscle phenotypic markers. Biomed. Res. Int., 5038602 (2017)

  65. Sciatti, E., Vizzardi, E., Castiello, A., Valentini, F., Bonadei, I., Gelsomino, S., Lorusso, R., Metra, M.: The role of type 2 diabetes mellitus on hypertensive-related aortic stiffness. Echocardiography 35, 798–803 (2018)

    Article  Google Scholar 

  66. Maki-Petaja, K.M., Elkhawad, M., Cheriyan, J., Joshi, F.R., Ostor, A.J., Hall, F.C., Rudd, J.H., Wilkinson, I.B.: Anti-tumor necrosis factor-a therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis. Circulation 126, 2473–2480 (2012)

    Article  Google Scholar 

  67. Vizzardi, E., Sciatti, E., Bondadei, I., Menottil, E., Prati, F., Scodro, M., Dallapellegrina, L., Berlendis, M., Poli, P., Padoan, R., Metra, M.: Elastic aortic properties in cystic fibrosis adults without cardiovascular risk factors: a case-control study. Echocardiography 36, 1118–1122 (2019)

    Article  Google Scholar 

  68. Medzhitov, R.: Origin and physiological roles of inflammation. Nature 454, 428–435 (2008)

    Article  ADS  Google Scholar 

  69. Latorre, M., Humphrey, J.D.: Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension. Biomech. Model. Mechanobiol. 17, 1497–1511 (2018)

    Article  Google Scholar 

  70. Latorre, M., Bersi, M.R., Humphrey, J.D.: Computational modeling predicts immuno-mechanical mechanisms of maladaptative aortic remodeling in hypertension. Int. J. Eng. Sci. 14, 35–46 (2019)

    Article  MATH  Google Scholar 

  71. Kotas, M.E., Medzhitov, R.: Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015)

    Article  Google Scholar 

  72. Niklason, L.E., Yeh, A.T., Calle, E., Bai, Y., Valentin, A., Humphrey, J.D.: Enabling tools for engineering collagenous tissues, integrating bioreactors, intravital imaging, and biomechanical modeling. Proc. Natl. Acad. Sci. 107, 3335–3339 (2010)

    Article  ADS  Google Scholar 

  73. Miller, K.S., Lee, Y.U., Naito, Y., Breuer, C.K., Humphrey, J.D.: Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct. J. Biomech. 47, 2080–2087 (2014)

    Article  Google Scholar 

  74. Khosravi, R., Miller, K.S., Best, C.A., Shih, Y.C., Lee, Y-U., Yi, T., Shinoka, T., Breuer, C.K., Humphrey, J.D.: Biomechanical diversity despite mechanobiological stability in tissue engineered vascular grafts two years post-implantation. Tissue Eng., Part A 21, 1529–1538 (2015)

    Article  Google Scholar 

  75. Szafron, J., Khosravi, R., Reinhardt, J., Best, C.A., Bersi, M.R., Yi, T., Breuer, C.K., Humphrey, J.D.: Immuno-driven and mechano-mediated neotissue formation in tissue engineered vascular grafts. Ann. Biomed. Eng. 46, 1938–1950 (2018)

    Article  Google Scholar 

  76. Miller, K.S., Khosravi, R., Breuer, C.K., Humphrey, J.D.: A hypothesis-driven parametric study of the effects of polymeric scaffold properties on tissue engineered neovessel formation. Acta Biomater. 11, 283–294 (2015)

    Article  Google Scholar 

  77. Szafron, J.M., Ramachandra, A.B., Breuer, C.K., Marsden, A.L., Humphrey, J.D.: Optimization of tissue engineered vascular graft design using computational modeling. Tissue Eng., Part C 25, 561–570 (2019)

    Article  Google Scholar 

  78. Drews, J., Pepper, V.A., Best, C.A., Szafron, J.M., et al.: Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci. Transl. Med. 12, eaax6919 (2020)

    Article  Google Scholar 

  79. Figueroa, C.A., Baek, S., Taylor, C.A., Humphrey, J.D.: A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput. Methods Appl. Mech. Eng. 198, 3583–3602 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  80. Baek, S., Gleason, R.L., Rajagopal, K.R., Humphrey, J.D.: Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196, 3070–3078 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  81. Sheidaei, A., Hunley, S.C., Zeinali-Davarani, S., Raguin, L.G., Baek, S.: Simulation of abdominal aortic aneurysm growth with updated hemodynamic loads using a realistic geometry. Med. Eng. Phys. 33, 80–88 (2011)

    Article  Google Scholar 

  82. Wu, J., Shadden, S.C.: Coupled simulation of hemodynamics and vascular growth and remodeling in a subject-specific geometry. Ann. Biomed. Eng. 43, 1543–1554 (2015)

    Article  Google Scholar 

  83. Hayenga, H.N., Thorne, B., Peirce, S., Humphrey, J.D.: Ensuring congruency in multiscale models: towards linking agent based and continuum biomechanical models of arterial adaptations. Ann. Biomed. Eng. 39, 2669–2682 (2011)

    Article  Google Scholar 

  84. Irons, L., Latorre, M., Humphrey, J.D.: From transcript to tissue: multiscale modeling from cell signaling to matrix remodeling. Ann. Biomed. Eng. (2021). Accepted

  85. Kaunas, R., Hsu, H-J.: A kinematic model of stretch-induced stress fiber turnover and reorientation. J. Theor. Biol. 257, 320–330 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  86. Vernerey, F.J., Farsad, M.: A constrained mixture approach to mechano-sensing and force generation to contractile cells. J. Mech. Behav. Biomed. Mater. 4, 1683–1699 (2011)

    Article  Google Scholar 

  87. Valentin, A., Humphrey, J.D., Holzapfel, G.A.: A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation. Theory and numerical verification. Int. J. Numer. Methods Biomed. Eng. 29, 822–849 (2013)

    Article  MathSciNet  Google Scholar 

  88. Horat, N., Virag, L., Holzapfel, G.A., Soric, J., Karsaj, I.: A finite element implementation of a growth and remodeling model for soft biological soft tissues: verification and application to abdominal aortic aneurysms. Comput. Methods Appl. Mech. Eng. 352, 586–605 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  89. Cyron, C., Aydin, R.C., Humphrey, J.D.: A homogenized constrained mixture (and mechanical analog model) for growth and remodeling of soft tissue. Biomech. Model. Mechanobiol. 15, 1389–1403 (2016)

    Article  Google Scholar 

  90. Braeu, F.A., Seitz, A., Aydin, R.C., Cyron, C.J.: Homogenized constrained mixture models for anisotropic volumetric growth and remodeling. Biomech. Model. Mechanobiol. 16, 889–906 (2017)

    Article  Google Scholar 

  91. Latorre, M., Fast, H.JD.: rate-independent, finite element implementation of a 3D constrained mixture model of soft tissue growth and remodeling. Comput. Methods Appl. Mech. Eng. 368, 113156 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  92. Cyron, C., Humphrey, J.D.: Vascular homeostasis and the concept of mechanobiological stability. Int. J. Eng. Sci. 85, 203–223 (2014)

    Article  Google Scholar 

  93. Wu, J., Shadden, S.C.: Stability analysis of a continuum-based constrained mixture model for vascular growth and remodeling. Biomech. Model. Mechanobiol. 15, 1669–1684 (2016)

    Article  Google Scholar 

  94. Davies, K.J.A.: Adaptive homeostasis. Mol. Aspects Med. 49, 1–7 (2016)

    Article  Google Scholar 

  95. Chovatiya, R., Medzhitov, R.: Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281–288 (2014)

    Article  Google Scholar 

  96. Latorre, M., Humphrey, J.D.: Mechanobiological stability of biological soft tissues. J. Mech. Phys. Solids 125, 298–325 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  97. Taber, L.A.: A model for aortic growth based on fluid shear and fiber stresses. J. Biomech. Eng. 120, 348–354 (1998)

    Article  Google Scholar 

  98. Wagenseil, J.E.: A constrained mixture model for developing mouse aorta. Biomech. Model. Mechanobiol. 10, 671–687 (2011)

    Article  Google Scholar 

  99. Humphrey, J.D., Dufrense, E., Schwartz, M.A.: Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014)

    Article  Google Scholar 

  100. Emmert, M., Schmidt, B.A., Loerakker, S., et al.: Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci. Transl. Med. 10, eaan4587 (2018)

    Article  Google Scholar 

  101. Taber, L.A., Humphrey, J.D.: Stress modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123, 528–535 (2001)

    Article  Google Scholar 

  102. Alford, P.W., Humphrey, J.D., Taber, L.A.: Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomech. Model. Mechanobiol. 7, 245–262 (2008)

    Article  Google Scholar 

  103. Valentin, A., Humphrey, J.D.: Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodeling. Philos. Trans. R. Soc. Lond. A 367, 3585–3606 (2009)

    MATH  ADS  Google Scholar 

  104. Karsaj, I., Humphrey, J.D.: A 3-D framework for arterial growth and remodeling in response to altered hemodynamics. Int. J. Eng. Sci. 48, 1357–1372 (2010)

    Article  MATH  Google Scholar 

  105. Wan, W., Hansen, L., Gleason, R.L.: A 3-D constrained mixture model for mechanically mediated vascular growth and remodeling. Biomech. Model. Mechanobiol. 9, 403–419 (2010)

    Article  Google Scholar 

  106. Valentin, A., Holzapfel, G.A.: Constrained mixture models as tools for testing competing hypotheses in arterial biomechanics: a brief review. Mech. Res. Commun. 42, 126–133 (2012)

    Article  Google Scholar 

  107. Satha, G., Lindstrom, S.B., Klarbring, A.: A goal function approach to remodeling of arteries uncovers mechanisms for growth instability. Biomech. Model. Mechanobiol. 13, 1243–1259 (2014)

    Article  Google Scholar 

  108. Hald, E.S., Timm, C.D., Alford, P.W.: Amyloid beta influences vascular smooth muscle contractility and mechanoadaptation. J. Biomech. Eng. 138, 4034560 (2016)

    Article  Google Scholar 

  109. Soares, J.S., Sacks, M.S.: A triphasic constrained mixture model of engineered tissue formation under in vitro dynamic mechanical conditioning. Biomech. Model. Mechanobiol. 15, 293–316 (2016)

    Article  Google Scholar 

  110. Grytsan, A., Eriksson, T.S.E., Watton, P.N., Gasser, T.C.: Growth description for vessel wall adaptation: a thick-walled mixture model of abdominal aortic aneurysm evolution. Materials (Basel) 10, 994 (2017)

    Article  ADS  Google Scholar 

  111. Mousavi, S.J., Avril, S.: Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory. Biomech. Model. Mechanobiol. 16, 1765–1777 (2017)

    Article  Google Scholar 

  112. Famaey, N., Vastmans, J., Fehervary, H., Maes, L., Vanderveken, E., Rega, F., Mousavi, S.J., Avril, S.: Numerical simulation of arterial remodeling in pulmonary autografts. Z. Angew. Math. Mech. 98, 2239–2257 (2018)

    Article  MathSciNet  Google Scholar 

  113. Hill, M.R., Philp, C.J., Billington, C.K., Tatler, A.L., Johnson, S.R., O’Dea, R.D., Brook, B.S.: A theoretical model of inflammation- and mechanotransduction-driven asthmatic airway remodeling. Biomech. Model. Mechanobiol. 17, 1451–1470 (2018)

    Article  Google Scholar 

  114. Bhogal, P., Pederzani, G., Grytsan, A., Loh, Y., Brouwer, P.A., Andersson, T., Gundiah, N., Robertson, A.M., Watton, P.N., Soderman, M.: The unexplained success of stentplasty vasospasm treatment: insights using mechanistic mathematical modeling. Klin. Neuroradiol. 29, 763–774 (2019)

    Article  Google Scholar 

  115. Lin, W.J., Iafrati, M.D., Peattie, R.A., Dorfmann, L.: Non-axisymmetric dilatation of a thick-walled aortic aneurysmal tissue. Int. J. Non-Linear Mech. 109, 172–181 (2019)

    Article  ADS  Google Scholar 

  116. Maes, L., Fehervary, H., Vastmans, J., Mousavi, S.J., Avril, S., Famaey, N.: Constrained mixture modeling affects material parameter identification from planar biaxial tests. J. Mech. Behav. Biomed. Mater. 95, 124–135 (2019)

    Article  Google Scholar 

  117. Mousavi, S.J., Farzaneh, S., Avril, S.: Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model. Biomech. Model. Mechanobiol. 18, 1895–1913 (2019)

    Article  Google Scholar 

  118. Rachev, A., Shazly, T.: A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen. J. Mech. Behav. Biomed. Mater. 90, 61–72 (2019)

    Article  Google Scholar 

  119. Khosravi, R., Ramachandra, A.B., Szafron, J., Schiavazzi, D.E., Breuer, C.K., Humphrey, J.D.: A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development. Integr. Biol. 12, 47–63 (2020)

    Article  Google Scholar 

  120. Wu, J., Augustin, C., Shadden, S.C.: Reconstructing vascular homeostasis by growth-based prestretch and optimal fiber deposition. J. Mech. Behav. Biomed. Mater. ePub ahead of print (2020)

  121. Zou, D., Avril, S., Yang, H., Mousavi, S.J., Hackl, K., He, Y.: Three-dimensional numerical simulation of soft-tissue wound healing using constrained-mixture anisotropic hyperelasticity and gradient-enhanced damage mechanics. J. R. Soc. Interface 17, 20190708 (2020)

    Article  Google Scholar 

  122. Klisch, S.M., Chen, S.S., Sah, R.L., Hoger, A.: A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants. J. Biomech. Eng. 125, 169–179 (2003)

    Article  Google Scholar 

  123. Lemon, G., King, J.R., Byrne, H.M., Jensen, O.E., Shakesheff, K.M.: Mathematical modeling of engineered tissue growth using multiphase porous flow mixture theory. J. Math. Biol. 52, 571–594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  124. Ambrosi, D., Preziosi, L., Vitale, G.: The insight of mixtures theory for growth and remodeling. Z. Angew. Math. Phys. 61, 177–191 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  125. Taber, L.A.: Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48, 487–545 (1995)

    Article  ADS  Google Scholar 

  126. Ambrosi, D., Ateshian, G.A., Arruda, E.M., Cowin, S.C., Dumais, J., Goriely, A., Holzapfel, G.A., Humphrey, J.D., Kemkemer, R., Kuhl, E., Olberding, J.E., Taber, L.A., Garikipati, K.: Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59, 863–883 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  127. Ateshian, G., Humphrey, J.D.: Continuum mixture models of soft tissue growth and remodeling: past successes and future challenges. Annu. Rev. Biomed. Eng. 14, 97–111 (2012)

    Article  Google Scholar 

  128. Menzel, A., Kuhl, E.: Frontiers in growth and remodeling. Mech. Res. Commun. 42, 1–14 (2012)

    Article  Google Scholar 

  129. Cyron, C., Humphrey, J.D.: Growth and remodeling of load-bearing biological soft tissues. Meccanica 52, 645–664 (2017)

    Article  MathSciNet  Google Scholar 

  130. Gasser, T.C., Grytsan, A.: Biomechanical modeling the adaptation of soft biological tissue. Curr. Opin. Biomed. Eng. 1, 71–77 (2017)

    Article  Google Scholar 

  131. Ambrosi, D., Ben Amar, M., Cyron, C.J., DeSimona, A., Goriely, A., Humphrey, J.D., Kuhl, E.: Growth and remodeling of living systems: perspectives, challenges, and opportunities. J. R. Soc. Interface 16, 20190233 (2019)

    Article  Google Scholar 

  132. Goriely, A.: The Mathematics and Mechanics of Biological Growth. Springer, New York (2017)

    Book  MATH  Google Scholar 

  133. Taber, L.A.: Continuum Modeling in Mechanobiology. Springer, New York (2020)

    Book  Google Scholar 

Download references

Acknowledgements

I thank Professor Dr. Ray Ogden for inviting this paper. I acknowledge the critical early contributions of Professor Dr. K.R. Rajagopal with whom I first sought to establish foundations for a new approach to model soft tissues. I also thank former and current students, post-doctoral fellows, and research associates who contributed so much to the conceptual advances and/or particular implementations of this theory, including Drs. R. Gleason, S. Baek, I. Karsaj, A. Valentin, H. Hayenga, J. Wilson, C. Cyron, K. Miller, R. Khosravi, M. Rausch, A. Ramachandra, J. Szafron, M. Latorre, and L. Irons. Finally, the title stems, in part, from the great 19th century French author, Alexandre Dumas (1802–1870), who penned Twenty Years After, among other novels.

Funding

This work was supported by past and current grants from the US National Science Foundation (BES-0084644) and US National Institutes of Health (R01 HL054957, R01 HL064372, R01 HL080415, R01 HL086418, R01 HL105297, U01 HL116323, R01 HL128602, P01 HL134605, R01 HL139796, U01 HL142518, R01 HL146723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Humphrey.

Ethics declarations

Disclosures

The author declares no conflicts of interest, financial or otherwise.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table A.1 The full (heredity integral based) constrained mixture theory requires three classes of constitutive relations for each structurally significant constituent \(\alpha =1, 2, 3,\dots ,N\) to capture the evolving composition and material properties of a mature tissue for all G&R times \(\tau \in [0,s]\): constitutive-specific rates of mass density production \(m^{\alpha } ( \tau ) >0\), mass survival functions \(q^{\alpha } ( s-\tau ) \in [0,1]\), and stored energy functions \(\hat{W}^{\alpha } ( \mathbf{F}_{n ( \tau )}^{\alpha } (s) ) >0\), the latter of which include information on the deposition stretch and orientation. Although the basic framework has persisted over the past 20 years, notation has evolved to increase clarity: for example, G&R time \(t\) changed to time \(s\), subscript or superscript \(h\) for homeostatic changed to \(o\) for original homeostatic (to accommodate possible adaptive homeostasis), constituent index \(k\) changed to \(\alpha \), the rate parameter \(K_{q}^{\alpha } \) changed to \(k^{\alpha } \), and dimensional rate-gain parameters \(K_{g}^{\alpha } \) changed to non-dimensional gain parameters \(K_{j}^{\alpha } \), which can be subscripted to denote \(j = \text{stress}\) related or inflammation related. Of course, because these functions are constitutive, they necessarily differ for different problems, depending on 2D versus 3D formulations as well as, in some cases, on particular stresses of concern (constituent-specific versus tissue level), the presence of blood clots, damage to or healing of the functional cells, and the presence of inflammation. Listed here are a few of the key forms for the production and removal functions; the stored energy functions tend to follow standard forms, as, for example, neoHooken or Fung exponential. To facilitate comparisons here, some notations have been changed as appropriate for consistency with current conventions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humphrey, J.D. Constrained Mixture Models of Soft Tissue Growth and Remodeling – Twenty Years After. J Elast 145, 49–75 (2021). https://doi.org/10.1007/s10659-020-09809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-020-09809-1

Keywords

Mathematics Subject Classification

Navigation