Skip to main content

Advertisement

Log in

Growth and remodeling of load-bearing biological soft tissues

  • Advances in Biomechanics: from foundations to applications
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The past two decades reveal a growing role of continuum biomechanics in understanding homeostasis, adaptation, and disease progression in soft tissues. In this paper, we briefly review the two primary theoretical approaches for describing mechano-regulated soft tissue growth and remodeling on the continuum level as well as hybrid approaches that attempt to combine the advantages of these two approaches while avoiding their disadvantages. We also discuss emerging concepts, including that of mechanobiological stability. Moreover, to motivate and put into context the different theoretical approaches, we briefly review findings from mechanobiology that show the importance of mass turnover and the prestressing of both extant and new extracellular matrix in most cases of growth and remodeling. For illustrative purposes, these concepts and findings are discussed, in large part, within the context of two load-bearing, collagen dominated soft tissues—tendons/ligaments and blood vessels. We conclude by emphasizing further examples, needs, and opportunities in this exciting field of modeling soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ascenzi A (1993) Biomechanics and Galileo Galilei. J Biomech 26(2):95–100

    Article  Google Scholar 

  2. Galilei G (1638) Discorsi e dimostrazioni matematiche intorno a due nuove scienze. Lodewijk Elzevir, Leiden

    Google Scholar 

  3. Bauer L (1868) Lectures on orthopaedic surgery: delivered at the Brooklyn Medical and Surgical Institute. Wood, New York

    Google Scholar 

  4. Davis HG (1867) Conservative surgery. Appleton, New York

    Google Scholar 

  5. Nutt JJ (1913) Diseases and deformities of the foot. E.B. Treat, New York

    Google Scholar 

  6. Wolff J (1892) Das Gesetz der Transformation der Knochen. August Hirschwald, Berlin

    Google Scholar 

  7. Humphrey JD, Holzapfel GA (2012) Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech 45(5):805–814

    Article  Google Scholar 

  8. Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  Google Scholar 

  9. Nakagawa Y et al (1989) Effect of disuse on the ultrastructure of the achilles tendon in rats. Eur J Appl Physiol Occup Physiol 59(3):239–242

    Article  Google Scholar 

  10. Uhthoff HK, Jaworski ZF (1978) Bone loss in response to long-term immobilisation. J Bone Joint Surg Br 60-B(3):420–429

    Google Scholar 

  11. Jaworski ZF, Liskova-Kiar M, Uhthoff HK (1980) Effect of long-term immobilisation on the pattern of bone loss in older dogs. J Bone Joint Surg Br 62(1):104–110

    Google Scholar 

  12. Humphrey JD (2008) Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys 50(2):53–78

    Article  Google Scholar 

  13. Makale M (2007) Cellular mechanobiology and cancer metastasis. Birth Defects Res C Embryo Today 81(4):329–343

    Article  Google Scholar 

  14. Sumner DR et al (1998) Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J Biomech 31(10):909–917

    Article  Google Scholar 

  15. Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48(8):487–545

    Article  ADS  Google Scholar 

  16. Menzel A, Kuhl E (2012) Frontiers in growth and remodeling. Mech Res Commun 42:1–14

    Article  Google Scholar 

  17. Ambrosi D et al (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59(4):863–883

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Wolinsky H, Glagov S (1967) A lamellar unit of aortic medial structure and function in mammals. Circ Res 20(1):99–111

    Article  Google Scholar 

  19. Wolinsky H (1972) Long-term effects of hypertension on the rat aortic wall and their relation to concurrent aging changes: morphological and chemical studies. Circ Res 30(3):301–309

    Article  Google Scholar 

  20. Matsumoto T, Hayashi K (1996) Response of arterial wall to hypertension and residual stress. In: Hayashi K, Kamiya A, Ono K (eds) Biomechanics: functional adaptation and remodeling. Springer, Tokyo, pp 93–119. doi:10.1007/978-4-431-68317-9

    Chapter  Google Scholar 

  21. Shadwick RE (1999) Mechanical design in arteries. J Exp Biol 202(23):3305–3313

    Google Scholar 

  22. Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, Berlin

    Book  Google Scholar 

  23. Leung DY, Glagov S, Mathews MB (1976) Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191(4226):475–477

    Article  ADS  Google Scholar 

  24. Li Q et al (1998) Stretch-induced collagen synthesis in cultured smooth muscle cells from rabbit aortic media and a possible involvement of angiotensin II and transforming growth factor-beta. J Vasc Res 35(2):93–103

    Article  Google Scholar 

  25. Simon DD, Humphrey JD (2014) Learning from tissue equivalents: biomechanics and mechanobiology. In: Brennan AB, Kirschner CM (eds) Bio-inspired materials for biomedical engineering. Wiley, Hoboken, pp 281–308. doi:10.1002/9781118843499.ch15

    Chapter  Google Scholar 

  26. Brown RA et al (1998) Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J Cell Physiol 175(3):323–332

    Article  Google Scholar 

  27. Ezra DG et al (2010) Changes in fibroblast mechanostat set point and mechanosensitivity: an adaptive response to mechanical stress in floppy eyelid syndrome. Invest Ophthalmol Vis Sci 51(8):3853–3863

    Article  Google Scholar 

  28. Fung YC (1990) Biomechanics: motion, flow, stress, and growth. Springer, Berlin

    Book  MATH  Google Scholar 

  29. Li S et al (2003) Vascular smooth muscle cells orchestrate the assembly of type I collagen via α2β1 integrin, RhoA, and fibronectin polymerization. Am J Pathol 163(3):1045–1056

    Article  Google Scholar 

  30. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812

    Article  Google Scholar 

  31. Nissen R, Cardinale GJ, Udenfriend S (1978) Increased turnover of arterial collagen in hypertensive rats. Proc Natl Acad Sci USA 75(1):451–453

    Article  ADS  Google Scholar 

  32. Etminan N et al (2014) Age of collagen in intracranial saccular aneurysms. Stroke 45(6):1757–1763

    Article  Google Scholar 

  33. Arribas SM, Hinek A, Gonzalez MC (2006) Elastic fibres and vascular structure in hypertension. Pharmacol Ther 111(3):771–791

    Article  Google Scholar 

  34. Shapiro SD et al (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87(5):1828–1834

    Article  Google Scholar 

  35. O’Callaghan CJ, Williams B (2000) Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-beta(1). Hypertension 36(3):319–324

    Article  Google Scholar 

  36. Wyatt KEK, Bourne JW, Torzilli PA (2009) Deformation-dependent enzyme mechanokinetic cleavage of type I collagen. J Biomech Eng 131(5):051004

    Article  Google Scholar 

  37. Flynn BP et al (2010) Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8). PLoS ONE 5(8):e12337

    Article  ADS  Google Scholar 

  38. Maegdefessel L, Dalman RL, Tsao PS (2014) Pathogenesis of abdominal aortic aneurysms: microRNAs, proteases, genetic associations. Annu Rev Med 65:49–62

    Article  Google Scholar 

  39. Maegdefessel L et al (2014) miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat Commun 5:5214

    Article  ADS  Google Scholar 

  40. Simon DD, Niklason LE, Humphrey JD (2014) Tissue transglutaminase, not lysyl oxidase, dominates early calcium-dependent remodeling of fibroblast-populated collagen lattices. Cells Tissues Organs 200(2):104–117

    Article  Google Scholar 

  41. Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Mod Methods Appl Sci 12(03):407–430

    Article  MathSciNet  MATH  Google Scholar 

  42. Baek S, Rajagopal KR, Humphrey JD (2006) A theoretical model of enlarging intracranial fusiform aneurysms. J Biomech Eng 128(1):142–149

    Article  Google Scholar 

  43. Cyron CJ, Humphrey JD (2014) Vascular homeostasis and the concept of mechanobiological stability. Int J Eng Sci 85:203–223

    Article  Google Scholar 

  44. Canty EG et al (2006) Actin filaments are required for fibripositor-mediated collagen fibril alignment in tendon. J Biol Chem 281(50):38592–38598

    Article  Google Scholar 

  45. Clark K et al (2007) Myosin II and mechanotransduction: a balancing act. Trends Cell Biol 17(4):178–186

    Article  Google Scholar 

  46. Paszek MJ et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  MathSciNet  Google Scholar 

  47. Marenzana M et al (2006) The origins and regulation of tissue tension: identification of collagen tension-fixation process in vitro. Exp Cell Res 312(4):423–433

    Article  Google Scholar 

  48. Hinz B (2013) Matrix mechanics and regulation of the fibroblast phenotype. Periodontology 63(1):14–28

    Article  Google Scholar 

  49. Simon DD, Horgan CO, Humphrey JD (2012) Mechanical restrictions on biological responses by adherent cells within collagen gels. J Mech Behav Biomed Mater 14:216–226

    Article  Google Scholar 

  50. Tomasek JJ et al (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    Article  Google Scholar 

  51. Wang N et al (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–C616

    Article  Google Scholar 

  52. Klingberg F et al (2014) Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J Cell Biol 207(2):283–297

    Article  Google Scholar 

  53. Cyron CJ, Wilson JS, Humphrey JD (2014) Mechanobiological stability: a new paradigm to understand the enlargement of aneurysms? J R Soc Interface 11(100):20140680

    Article  Google Scholar 

  54. Jackson ZS et al (2005) Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler Thromb Vasc Biol 25(5):957–962

    Article  Google Scholar 

  55. Humphrey JD (2003) Review paper: continuum biomechanics of soft biological tissues. Proc R Soc Lond A Math Phys Eng Sci 459(2029):3–46

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–467

    Article  Google Scholar 

  57. Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(26):3455–3482

    Article  MATH  Google Scholar 

  58. Simo JC, Hughes TJR (2000) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  59. Schmid H et al (2012) Consistent formulation of the growth process at the kinematic and constitutive level for soft tissues composed of multiple constituents. Comput Methods Biomech Biomed Eng 15(5):547–561

    Article  Google Scholar 

  60. Ambrosi D, Guana F (2007) Stress-modulated growth. Math Mech Solids 12(3):319–342

    Article  MathSciNet  MATH  Google Scholar 

  61. Himpel G et al (2005) Computational modelling of isotropic multiplicative growth. Comp Mod Eng Sci 8:119–134

    MATH  Google Scholar 

  62. Kroon M (2010) Modeling of fibroblast-controlled strengthening and remodeling of uniaxially constrained collagen gels. J Biomech Eng 132(11):111008

    Article  Google Scholar 

  63. Driessen NJ et al (2008) Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech Model Mechanobiol 7(2):93–103

    Article  Google Scholar 

  64. Pluijmert M et al (2012) Adaptive reorientation of cardiac myofibers: the long-term effect of initial and boundary conditions. Mech Res Commun 42:60–67

    Article  Google Scholar 

  65. Eriksson TSE et al (2014) Modelling volumetric growth in a thick walled fibre reinforced artery. J Mech Phys Solids 73:134–150

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Watton PN, Hill NA (2009) Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech Model Mechanobiol 8(1):25–42

    Article  Google Scholar 

  67. Watton PN et al (2011) Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms. Biomech Model Mechanobiol 10(1):109–132

    Article  Google Scholar 

  68. Watton PN, Ventikos Y, Holzapfel GA (2009) Modelling the mechanical response of elastin for arterial tissue. J Biomech 42(9):1320–1325

    Article  Google Scholar 

  69. Selimovic A, Ventikos Y, Watton PN (2014) Modelling the Evolution of Cerebral Aneurysms: biomechanics, Mechanobiology and Multiscale Modelling. Procedia IUTAM 10:396–409

    Article  Google Scholar 

  70. Watton P, Hill N, Heil M (2004) A mathematical model for the growth of the abdominal aortic aneurysm. Biomech Model Mechanobiol 3(2):98–113

    Article  Google Scholar 

  71. Cyron CJ, Aydin RC, Humphrey JD (2016) A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomech Model Mechanobiol. doi:10.1007/s10237-016-0770-9

    Google Scholar 

  72. Rajagopal K, Srinivasa A (1998) Mechanics of the inelastic behavior of materials—Part 1, theoretical underpinnings. Int J Plast 14(10):945–967

    Article  MATH  Google Scholar 

  73. Cyron CJ, Wilson JS, Humphrey JD (2015) Mechanobiological stability: a new paradigm to understand growth and remodeling in soft tissue. In: 9th European solid mechanics conference (ESMC 2015). Leganés-Madrid, Spain

  74. Wilson JS, Baek S, Humphrey JD (2013) Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms. Proc R Soc A 469(2150):20120556

    Article  MathSciNet  Google Scholar 

  75. Geest JPV, Sacks MS, Vorp DA (2004) Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J Biomech Eng 126(6):815–822

    Article  Google Scholar 

  76. Haskett D et al (2010) Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech Model Mechanobiol 9(6):725–736

    Article  Google Scholar 

  77. Teng Z et al (2009) An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J Biomech 42(15):2535–2539

    Article  Google Scholar 

  78. Sommer G et al (2008) Dissection properties of the human aortic media: an experimental study. J Biomech Eng 130(2):021007

    Article  Google Scholar 

  79. Fratzl P (2008) Collagen: structure and mechanics, an introduction. In: Fratzl P (ed) Collagen. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  80. Satta J et al (1995) Increased turnover of collagen in abdominal aortic aneurysms, demonstrated by measuring the concentration of the aminoterminal propeptide of type III procollagen in peripheral and aortal blood samples. J Vasc Surg 22(2):155–160

    Article  Google Scholar 

  81. Shantikumar S et al (2010) Diabetes and the abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 39(2):200–207

    Article  Google Scholar 

  82. Agnoletti D et al (2013) Central hemodynamic modifications in diabetes mellitus. Atherosclerosis 230(2):315–321

    Article  Google Scholar 

  83. Lanne T et al (1992) Diameter and compliance in the male human abdominal aorta: influence of age and aortic aneurysm. Eur J Vasc Surg 6(2):178–184

    Article  Google Scholar 

  84. Pearson AC et al (1994) Transesophageal echocardiographic assessment of the effects of age, gender, and hypertension on thoracic aortic wall size, thickness, and stiffness. Am Heart J 128(2):344–351

    Article  ADS  Google Scholar 

  85. Sonesson B et al (1993) Compliance and diameter in the human abdominal aorta–the influence of age and sex. Eur J Vasc Surg 7(6):690–697

    Article  Google Scholar 

  86. Taber LA, Eggers DW (1996) Theoretical study of stress-modulated growth in the aorta. J Theor Biol 180(4):343–357

    Article  Google Scholar 

  87. Sáez P et al (2014) Computational modeling of hypertensive growth in the human carotid artery. Comput Mech 53(6):1183–1196

    Article  MathSciNet  MATH  Google Scholar 

  88. Valentin A et al (2009) Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J R Soc Interface 6(32):293–306

    Article  Google Scholar 

  89. Figueroa CA et al (2009) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 198(45–46):3583–3602

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Kroon M, Holzapfel GA (2009) A theoretical model for fibroblast-controlled growth of saccular cerebral aneurysms. J Theor Biol 257(1):73–83

    Article  MathSciNet  Google Scholar 

  91. Wilson JS, Baek S, Humphrey JD (2012) Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J R Soc Interface 9(74):2047–2058

    Article  Google Scholar 

  92. Zeinali-Davarani S, Sheidaei A, Baek S (2011) A finite element model of stress-mediated vascular adaptation: application to abdominal aortic aneurysms. Comput Methods Biomech Biomed Eng 14(9):803–817

    Article  Google Scholar 

  93. Valentín A, Humphrey J, Holzapfel GA (2013) A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification. Int J Numer Methods Biomed Eng 29(8):822–849

    Article  MathSciNet  Google Scholar 

  94. Zeinali-Davarani S, Baek S (2012) Medical image-based simulation of abdominal aortic aneurysm growth. Mech Res Commun 42:107–117

    Article  Google Scholar 

  95. Göktepe S et al (2010) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol 265(3):433–442

    Article  Google Scholar 

  96. Zöllner AM et al (2012) Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis. PLoS ONE 7(10):e45661

    Article  ADS  Google Scholar 

  97. Creative Commons License CC BY-NC-ND 4.0. http://creativecommons.org/licenses/by-nc-nd/4.0/

  98. Zöllner AM et al (2013) Growth on demand: reviewing the mechanobiology of stretched skin. J Mech Behav Biomed Mater 28:495–509

    Article  Google Scholar 

  99. Grytz R, Meschke G (2010) A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomech Model Mechanobiol 9(2):225–235

    Article  Google Scholar 

  100. Grytz R et al (2012) Lamina cribrosa thickening in early glaucoma predicted by a microstructure motivated growth and remodeling approach. Mech Mater 44:99–109

    Article  Google Scholar 

  101. Simon DD, Humphrey JD (2012) On a class of admissible constitutive behaviors in free-floating engineered tissues. Int J Non Linear Mech 47(2):173–178

    Article  Google Scholar 

  102. Simon DD, Murtada SI, Humphrey JD (2014) Computational model of matrix remodeling and entrenchment in the free-floating fibroblast-populated collagen lattice. Int J Numer Methods Biomed Eng 30(12):1506–1529

    Article  Google Scholar 

  103. Miller KS et al (2013) Computational growth and remodeling model for evolving tissue engineered vascular grafts in the venous circulation. In: ASME 2013 Conference on frontiers in medical devices: applications of computer modeling and simulation. American Society of Mechanical Engineers

  104. Miller KS et al (2014) A hypothesis-driven parametric study of effects of polymeric scaffold properties on tissue engineered neovessel formation. Acta Biomater 11:283–294

    Article  Google Scholar 

  105. Khosravi R et al (2015) Biomechanical diversity despite mechanobiological stability in tissue engineered vascular grafts 2 years post-implantation. Tissue Eng Part A 21(9–10):1529–1538

    Article  Google Scholar 

  106. Miller KS et al (2014) Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct. J Biomech 47(9):2080–2087

    Article  Google Scholar 

  107. Loerakker S, Ristori T, Baaijens FP (2015) A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. J Mech Behav Biomed Mater 58:173–187

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the Emmy Noether program of the German Research Foundation DFG (CY 75/2-1), the International Graduate School for Science and Engineering (IGSSE) of the Technische Universität München, and the United States NIH (R01 HL086418, U01 HL116323, and R01 HL128602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Humphrey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cyron, C.J., Humphrey, J.D. Growth and remodeling of load-bearing biological soft tissues. Meccanica 52, 645–664 (2017). https://doi.org/10.1007/s11012-016-0472-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0472-5

Keywords

Navigation