Skip to main content
Log in

A Microstructurally Motivated Model of Arterial Wall Mechanics with Mechanobiological Implications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Through mechanobiological control of the extracellular matrix, and hence local stiffness, smooth muscle cells of the media and fibroblasts of the adventitia play important roles in arterial homeostasis, including adaptations to altered hemodynamics, injury, and disease. We present a new approach to model arterial wall mechanics that seeks to define better the mechanical environments of the media and adventitia while avoiding the common prescription of a traction-free reference configuration. Specifically, we employ the concept of constituent-specific deposition stretches from the growth and remodeling literature and define a homeostatic state at physiologic pressure and axial stretch that serves as a convenient biologically and clinically relevant reference configuration. Information from histology and multiphoton imaging is then used to prescribe structurally motivated constitutive relations for a bi-layered model of the wall. The utility of this approach is demonstrated by describing in vitro measured biaxial pressure–diameter and axial force–length responses of murine carotid arteries and predicting the associated intact and radially cut traction-free configurations. The latter provides a unique validation while confirming that this constrained mixture approach naturally recovers estimates of residual stresses, which are fundamental to wall mechanics, without the usual need to prescribe an opening angle that is only defined conveniently on cylindrical geometries and cannot be measured in vivo. Among other findings, the model suggests that medial and adventitial stresses can be nearly uniform at physiologic loads, albeit at separate levels, and that the adventitia bears increasingly more load at supra-physiologic pressures while protecting the media from excessive stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Agianniotis, A., A. Rachev, and N. Stergiopulos. Active axial stress in mouse aorta. J. Biomech. 45:1924–1927, 2012.

    Article  CAS  PubMed  Google Scholar 

  2. Alford, P. W., J. D. Humphrey, and L. A. Taber. Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomech. Model. Mechanobiol. 7:245–262, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bersi, M. R., M. J. Collins, E. Wilson, and J. D. Humphrey. Disparate changes in the mechanical properties of murine carotid arteries and aorta in response to chronic infusion of angiotensin-II. Int. J. Adv. Eng. Sci. Appl. Math. 4:228–240, 2012.

    Article  Google Scholar 

  4. Brankov, G., A. I. Rachev, and S. Stoychev. Mechanics of biological solid. In: Proceedings of the Euromech Colloquium, edited by G. Brankov. Varna, Bulgaria: Bulgarian Academy of Sciences, 1975, pp. 71–78.

    Google Scholar 

  5. Cardamone, L., A. Valentin, J. F. Eberth, and J. D. Humphrey. Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 8:431–446, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chiquet, M., L. Gelman, R. Lutz, and S. Maier. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim. Biophys. Acta 1793:911–920, 2009.

    Article  CAS  PubMed  Google Scholar 

  7. Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–387, 2011.

    Article  PubMed  Google Scholar 

  8. Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108:189–192, 1986.

    Article  CAS  PubMed  Google Scholar 

  9. Davis, E. C. Elastic lamina growth in the developing mouse aorta. J. Histochem. Cytochem. 43:1115–1123, 1995.

    Article  CAS  PubMed  Google Scholar 

  10. Dingemans, K. P., P. Teeling, J. H. Lagendijk, and A. E. Becker. Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 258:1–14, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Dorrington, K. L., and N. G. McCrum. Elastin as a rubber. Biopolymers 16:1201–1222, 1977.

    Article  CAS  PubMed  Google Scholar 

  12. Eberth, J. F., V. C. Gresham, A. K. Reddy, N. Popovic, E. Wilson, and J. D. Humphrey. Importance of pulsatility in hypertensive carotid artery growth and remodeling. J. Hypertens. 27:2010–2021, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Eberth, J. F., N. Popovic, V. C. Gresham, E. Wilson, and J. D. Humphrey. Time course of carotid artery growth and remodeling in response to altered pulsatility. Am. J. Physiol. Heart Circ. Physiol. 299:H1875–H1883, 2010.

    Article  CAS  PubMed  Google Scholar 

  14. Ferruzzi, J., M. R. Bersi, and J. D. Humphrey. Biomechanical phenotyping of central arteries in health and disease: advantages of and methods for murine models. Ann. Biomed. Eng. 41:1311–1330, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Ferruzzi, J., M. J. Collins, A. T. Yeh, and J. D. Humphrey. Mechanical assessment of elastin integrity in fibrillin-1-deficient carotid arteries: implications for Marfan syndrome. Cardiovasc. Res. 92:287–295, 2011.

    Article  CAS  PubMed  Google Scholar 

  16. Fonck, E., G. Prodhom, S. Roy, L. Augsburger, D. A. Rufenacht, and N. Stergiopulos. Effect of elastin degradation on carotid wall mechanics as assessed by a constituent-based biomechanical model. Am. J. Physiol. Heart Circ. Physiol. 292:H2754–H2763, 2007.

    Article  CAS  PubMed  Google Scholar 

  17. Forte, A., A. Della Corte, M. De Feo, F. Cerasuolo, and M. Cipollaro. Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm. Cardiovasc. Res. 88:395–405, 2010.

    Article  CAS  PubMed  Google Scholar 

  18. Gleason, R. L., S. P. Gray, E. Wilson, and J. D. Humphrey. A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. J. Biomech. Eng. 126:787–795, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Greenwald, S. E., J. E. Moore, Jr., A. Rachev, T. P. Kane, and J. J. Meister. Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119:438–444, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Holzapfel, G. A., and T. C. Gasser. Computational stress-deformation analysis of arterial walls including high-pressure response. Int. J. Cardiol. 116:78–85, 2007.

    Article  PubMed  Google Scholar 

  21. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  22. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. Comparison of a multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J. Biomech. Eng. 126:264–275, 2004.

    Article  PubMed  Google Scholar 

  23. Holzapfel, G. A., and R. W. Ogden. Constitutive modelling of arteries. Proc. R. Soc. A 466:1551–1597, 2010.

    Article  Google Scholar 

  24. Humphrey, J. D. Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23:1–162, 1995.

    CAS  PubMed  Google Scholar 

  25. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 757 pp, 2002.

  26. Humphrey, J. D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50:53–78, 2008.

    Article  CAS  PubMed  Google Scholar 

  27. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12:407–430, 2002.

    Article  Google Scholar 

  28. Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10:221–246, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Karsaj, I., J. Soric, and J. D. Humphrey. A 3-D framework for arterial growth and remodeling in response to altered hemodynamics. Int. J. Eng. Sci. 48:1357–1372, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Langille, B. L. Arterial remodeling: relation to hemodynamics. Can. J. Physiol. Pharmacol. 74:834–841, 1996.

    Article  CAS  PubMed  Google Scholar 

  31. Lanir, Y. A structural theory for the homogeneous biaxial stress–strain relationships in flat collagenous tissues. J. Biomech. 12:423–436, 1979.

    Article  CAS  PubMed  Google Scholar 

  32. Li, C., and Q. Xu. Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell. Signal. 19:881–891, 2007.

    Article  CAS  PubMed  Google Scholar 

  33. Martufi, G., and T. C. Gasser. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. J. Biomech. 44:2544–2550, 2011.

    Article  PubMed  Google Scholar 

  34. McGrath, J. C., C. Deighan, A. M. Briones, M. M. Shafaroudi, M. McBride, J. Adler, S. M. Arribas, E. Vila, and C. J. Daly. New aspects of vascular remodelling: the involvement of all vascular cell types. Exp. Physiol. 90:469–475, 2005.

    Article  PubMed  Google Scholar 

  35. Nevo, E., and Y. Lanir. Structural finite deformation model of the left ventricle during diastole and systole. J. Biomech. Eng. 111:342–349, 1989.

    Article  CAS  PubMed  Google Scholar 

  36. Rachev, A. Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J. Biomech. 30:819–827, 1997.

    Article  CAS  PubMed  Google Scholar 

  37. Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35:681–690, 1957.

    Article  CAS  PubMed  Google Scholar 

  38. Roy, S., P. Silacci, and N. Stergiopulos. Biomechanical proprieties of decellularized porcine common carotid arteries. Am. J. Physiol. Heart Circ. Physiol. 289:H1567–H1576, 2005.

    Article  CAS  PubMed  Google Scholar 

  39. Schrauwen, J. T. C., A. Vilanova, R. Rezakhaniha, N. Stergiopulos, F. N. van de Vosse, and P. H. M. Bovendeerd. A method for the quantification of the pressure dependent 3D collagen configuration in the arterial adventitia. J. Struct. Biol. 180:335–342, 2012.

    Article  CAS  PubMed  Google Scholar 

  40. Sommer, G., and G. A. Holzapfel. 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries. J. Mech. Behav. Biomed. Mater. 5:116–128, 2012.

    Article  PubMed  Google Scholar 

  41. Taber, L. A., and J. D. Humphrey. Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123:528–535, 2001.

    Article  CAS  PubMed  Google Scholar 

  42. Tieu, B. C., X. Ju, C. Lee, H. Sun, W. Lejeune, A. R. Iii, A. R. Brasier, and R. G. Tilton. Aortic adventitial fibroblasts participate in angiotensin-induced vascular wall inflammation and remodeling. J. Vasc. Res. 48:261–272, 2010.

    Article  PubMed  Google Scholar 

  43. Tulis, D. A. Histological and morphometric analyses for rat carotid balloon injury model. Methods Mol. Med. 139:31–66, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Valentín, A., L. Cardamone, S. Baek, and J. D. Humphrey. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6:293–306, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Vito, R. P., and S. A. Dixon. Blood vessel constitutive models-1995–2002. Annu. Rev. Biomed. Eng. 5:413–439, 2003.

    Article  CAS  PubMed  Google Scholar 

  46. von Maltzahn, W. W., D. Besdo, and W. Wiemer. Elastic properties of arteries: a nonlinear two-layer cylindrical model. J. Biomech. 14:389–397, 1981.

    Article  Google Scholar 

  47. von Maltzahn, W. W., R. G. Warriyar, and W. F. Keitzer. Experimental measurements of elastic properties of media and adventitia of bovine carotid arteries. J. Biomech. 17:839–847, 1984.

    Article  Google Scholar 

  48. Wagner, H. P., and J. D. Humphrey. Differential passive and active biaxial mechanical behaviors of muscular and elastic arteries: basilar versus common carotid. J. Biomech. Eng. 133:0510091–05100910, 2011.

    Article  Google Scholar 

  49. Wan, W., H. Yanagisawa, and R. L. Gleason, Jr.. Biomechanical and microstructural properties of common carotid arteries from fibulin-5 null mice. Ann. Biomed. Eng. 38:3605–3617, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Wight, T. N. Cell biology of arterial proteoglycans. Arterioscler. Thromb. Vasc. Biol. 9:1–20, 1989.

    Article  CAS  Google Scholar 

  51. Wilber, J. P., and J. R. Walton. The convexity properties of a class of constitutive models for biological soft issues. Math. Mech. Solids 7:217–235, 2002.

    Article  Google Scholar 

  52. Wilson, J. S., S. Baek, and J. D. Humphrey. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J. R. Soc. Interface 9:2047–2058, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Zeller, P. J., and T. C. Skalak. Contribution of individual structural components in determining the zero-stress state in small arteries. J. Vasc. Res. 35:8–17, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Matt Bersi (Yale University) for providing the codes for histological analysis (cf. Fig. 2). This work was supported, in part, by grants from the NIH (HL086418 and HL105297), the National Marfan Foundation, the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Program and NSERC CREATE Training Program for Biomedical Engineers for the 21st century), and the Werner Graupe International Fellowship in Engineering.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Humphrey.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellini, C., Ferruzzi, J., Roccabianca, S. et al. A Microstructurally Motivated Model of Arterial Wall Mechanics with Mechanobiological Implications. Ann Biomed Eng 42, 488–502 (2014). https://doi.org/10.1007/s10439-013-0928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0928-x

Keywords

Navigation