Skip to main content
Log in

Non-indigenous introgression into the Norwegian red deer population

  • Short Communication
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Rates of introgression from non-indigenous into native populations are increasing worldwide, often as a result of anthropogenic translocation events. In ungulates translocations have been common, especially among deer. European red deer consists of two distinct lineages, one western and one eastern. These probably originate from different glacial refuges, but it is unknown to what extent they hold different adaptations. Here we address dispersal and introgression into the Norwegian mainland population from an introduced island stock consisting of an admixture of both European lineages. The last decade this stock has grown considerably in number and dispersal could be expected to have increased. We therefore used samples separated by a 5 year interval from Otterøya, adjacent mainland areas and a more distant sub-population. Bayesian assignment analysis verified the genetic structure and identified dispersal between the Otterøya stock and the adjacent mainland coastal areas. Three individuals (two newly sampled) with second or third generation non-indigenous origin were found among the adjacent mainland samples (5 and 3 %, respectively). Two individuals with first and second generation mainland-origin were found on Otterøya (old samples). This suggests some non-indigenous introgression from Otterøya into the mainland Norwegian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Tree 16:613–622

    Google Scholar 

  • Asher GW, Archer JA, Scott IC et al (2005) Reproductive performance of pubertal red deer (Cervus elaphus) hinds: effects of genetic introgression of wapiti subspecies on pregnancy rates at 18 months of age. Anim Reprod Sci 90:287–306

    Article  PubMed  CAS  Google Scholar 

  • Burke JM, Arnold ML (2001) Genetics and the fitness of hybrids. Annu Rev Genet 35:31–52

    Article  PubMed  CAS  Google Scholar 

  • Carden RF, McDevitt AD, Zachos FE et al (2012) Phylogeographic, ancient DNA, fossil and morphometric analyses reveal ancient and modern introductions of a large mammal: the complex case of red deer (Cervus elaphus) in Ireland. Quatern Sci Rev 42:74–84

    Article  Google Scholar 

  • Collett R (1909) Hjorten i Norge (Cervus elaphus atlanticus), nogle biologiske meddelelser (in Norwegian). Bergens Mus Aarbok 6:9–31

    Google Scholar 

  • Coulson TN, Pemberton JM, Albon SD et al (1998) Microsatellites reveal heterosis in red deer. Proc Biol Sci 265:489–495

    Article  PubMed  CAS  Google Scholar 

  • Die-Woche (1902) Rochwildtransport nach Norwegen (in German). Reitz publishing. Berlin, pp 1111–1113

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Fischer J, Lindenmayer DB (2000) An assessment of the published results of animal relocations. Biol Conserv 96:1–11

    Article  Google Scholar 

  • Flagstad Ø, Røed KH (2003) Refugial origins of reindeer (Rangifer tarandus L.) inferred from mitochondrial DNA sequences. Evolution 57:658–670

    PubMed  CAS  Google Scholar 

  • Forchhammer MC, Stenseth NC, Post E, Langvatn R (1998) Population dynamics of Norwegian red deer: density-dependence and climatic variation. Proc Biol Sci 265:341–350

    Article  PubMed  CAS  Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327

    Article  PubMed  CAS  Google Scholar 

  • Goodman SJ, Barton NH, Swanson G, Abernethy K, Pemberton JM (1999) Introgression through rare hybridisation: a genetic study of a hybrid zone between red and sika deer (Genus Cervus) in Argyll, Scotland. Genetics 152:355–371

    PubMed  CAS  Google Scholar 

  • Grøtan V, Sæther B-E, Lillegård M, Solberg EJ, Engen S (2009) Geographical variation in the influence of density dependence and climate on the recruitment of Norwegian moose. Oecologia 161:685–695

    Article  PubMed  Google Scholar 

  • Gyllensten U, Ryman N, Reuterwall C, Dratch P (1983) Genetic differentiation in four European subspecies of red deer (Cervus elaphus L.). Heredity 51:561–580

    Article  Google Scholar 

  • Haanes H, Rosef O, Veiberg V, Røed KH (2005) Microsatellites with variation and heredity applicable to parentage and population studies of Norwegian red deer (Cervus elaphus atlanticus). Anim Genet 36:454–455

    Article  PubMed  CAS  Google Scholar 

  • Haanes H, Røed KH, Mysterud A, Langvatn R, Rosef O (2010a) Consequences for genetic diversity and population performance of introducing continental red deer into the northern distribution range. Conserv Genet 11:163–1665

    Google Scholar 

  • Haanes H, Røed KH, Flagstad Ø, Rosef O (2010b) Genetic structure in an expanding cervid population after population reduction. Conserv Genet 11:11–20

    Article  Google Scholar 

  • Haanes H, Røed KH, Perez-Espona S, Rosef O (2011a) Low genetic variation support bottlenecks in Scandinavian red deer. Eur J Wildl Res 57:1137–1150

    Article  Google Scholar 

  • Haanes H, Røed KH, Solberg EJ, Herfindal I, Sæther BE (2011b) Genetic discontinuities in a continuously distributed and highly mobile ungulate, the Norwegian moose. Conserv Genet 12:1131–1143

    Article  Google Scholar 

  • Hartl GB, Nadlinger K, Apollonio M et al (1995) Extensive mitochondrial-DNA differentiation among European red deer (Cervus-elaphus) populations: implications for conservation and management. Z Saugetierkd-Int J Mamm Biol 60:41–52

    Google Scholar 

  • Hartl GB, Zachos F, Nadlinger K (2003) Genetic diversity in European red deer (Cervus elaphus L.): anthropogenic influences on natural populations. CR Biol 326:37–42

    Article  Google Scholar 

  • IPCC (2007) Intergovernmental Panel on Climate Change Fourth Assessment Report. http://www.ipcc.ch. Last accessed May 2009

  • Kuehn R, Schroeder W, Pirchner F, Rottmann O (2003) Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conserv Genet 4:157–166

    Article  CAS  Google Scholar 

  • Lønnberg E (1906) On the geographic races of red deer in Scandinavia. Ark Zool 3:1–19

    Google Scholar 

  • Ludt CJ, Schroeder W, Rottmanm O, Kuehn R (2004) Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 31:1064–1083

    Article  PubMed  CAS  Google Scholar 

  • Matrai K, Szemethy L, Toth P, Katona K, Szekely J (2004) Resource use by red deer in lowland nonnative forests, Hungary. J Wildl Manag 68:879–888

    Article  Google Scholar 

  • McDevitt AD, Edwards CJ, O’Toole P et al (2009a) Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mamm Biol 74:263–273

    Google Scholar 

  • McDevitt AD, Mariani S, Hebblewhite M et al (2009b) Survival in the Rockies of an endangered hybrid swarm from diverged caribou (Rangifer tarandus) lineages. Mol Ecol 18:665–679

    Article  PubMed  CAS  Google Scholar 

  • Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2002) Large-scale habitat variability, delayed density effects and red deer populations in Norway. J Anim Ecol 71:569–580

    Article  Google Scholar 

  • Mysterud A, Meisingset EL, Veiberg V et al (2007) Monitoring population size of red deer: an evaluation of two types of census data from Norway. Wildl Biol 13:285–298

    Article  Google Scholar 

  • Niedzialkowska M, Jedrezejewska B, Honnen A-C et al (2011) Molecular biogeography of red deer Cervus elaphus from eastern Europe: insights from mitochondrial DNA sequences. Acta Theor 56:1–12

    Article  Google Scholar 

  • Nussey DH, Pemberton J, Donald A, Kruuk LEB (2006) Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus). Heridity 97:56–65

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  • Rosvold J, Røed KH, Hufthammer AK, Andersen R, Stenøien HK (2012) Reconstructing the history of a fragmented and heavily exploited red deer population using ancient and contemporary DNA. BMC Evol Biol 12:191. doi:10.1186/1471-2148-12-191

    Article  PubMed  Google Scholar 

  • Skog A, Zachos FE, Rueness EK et al (2009) Phylogeography of red deer (Cervus elaphus) in Europe. J Biogeogr 36:66–77

    Article  Google Scholar 

  • Whitehead GK (1993) The Whitehead encyclopedia of deer. Swan Hill Press, Shrewsbury

    Google Scholar 

  • Zachos FE, Hartl GB (2011) Phylogeography, population genetics and conservation of the European red deer Cervus elaphus. Mamm Rev 41:138–150

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to all the hunters and game managers in the municipalities of Northern Trønderlag who has put such an interest into this project, especially Aksel Håkonsen in the administration of the Municipality Namsos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Haanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haanes, H., Rosvold, J. & Røed, K.H. Non-indigenous introgression into the Norwegian red deer population. Conserv Genet 14, 237–242 (2013). https://doi.org/10.1007/s10592-012-0431-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-012-0431-1

Keywords

Navigation