Skip to main content
Log in

Genetic structure in an expanding cervid population after population reduction

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Norwegian red deer population (Cervus elaphus) was from the mid eighteenth to the early twentieth century drastically reduced in size and distribution but has the last century expanded both demographically and spatially. We have investigated genetic variation, differentiation and admixture in this spatially expanding ungulate population, using 14 microsatellites. The present genetic structure is moderate to strong with an average F ST = 0.08. Low M-ratios indicate loss of genetic variation in all localities and signals of a recent bottleneck was identified in 14 of 15 localities. Genetic distances between the localities indicate two main routes of dispersal during expansion, from the north–west and south–west, respectively. Bayesian assignment tests verify a break of the dataset in two, and demonstrate 99.9% probability for the existence of five sub-populations, which coincide well with five relict populations described by historic records. Computer simulations suggest that the observed genetic differentiation is recent rather than ancient, and that it may be explained by models of fragmentation or of founder events and subsequent merging rather than by models of recent bottlenecks in some particular demes within an ancient genetic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahlèn I (1965) Studies on the red deer, Cervus elaphus L. Scandinavia. III. Ecol investig Viltrevy (Stockh) 3:177–376

    Google Scholar 

  • Austerlitz F, JungMuller B, Godelle B, Gouyon PH (1997) Evolution of coalescence times, genetic diversity and structure during colonization. Theor Popul Biol 51:148–164. doi:10.1006/tpbi.1997.1302

    Article  Google Scholar 

  • Baccus R, Ryman N, Smith MH, Reuterwall C, Cameron D (1983) Genetic variability and differentiation of large grazing mammals. J Mammal 64:109–120. doi:10.2307/1380756

    Article  Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013

    CAS  PubMed  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology, individuals, populations and communities, 3rd edn. Blackwell, Oxford

    Google Scholar 

  • Bhebhe E, Kogi J, Holder DA et al (1994) Caprine microsatellite dinucleotide repeat polymorphism at the SR-CRSP-6, SR-CRSP-7, SR-CRSP-8, SR-CRSP-9 and SR-CRSP-10. Anim Genet 25:203

    Article  CAS  PubMed  Google Scholar 

  • Bishop MD, Kappes SM, Keele JW et al (1994) A genetic linkage map for cattle. Genetics 136:619–639

    CAS  PubMed  Google Scholar 

  • Buchanan FC, Crawford AM (1993) Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB226 and OarFCB304 loci. Anim Genet 24:145

    CAS  PubMed  Google Scholar 

  • Chakraborty R, Nei M (1977) Bottleneck effects on average heterozygosity and genetic distance with stepwise mutation model. Evol Int J Org Evol 31:347–356. doi:10.2307/2407757

    Google Scholar 

  • Chakraborty R, Kimmel M (1999) Statistics of microsatellite loci: estimation of mutation rate and pattern of population expansion. In: Goldstein DB, Schlotterer C (eds) Microsatellites; evolution and applications. Oxford University Press, Oxford, pp 139–150

    Google Scholar 

  • Collett R (1877) Bemerkninger til Norges Pattedyrfauna (in Norwegian). Nyt Magazin for Naturvidenskaberne 22:93–133

  • Collett R (1909) Hjorten i Norge (Cervus elaphus atlanticus), nogle biologiske meddelelser (in Norwegian). Bergens museums Aarbok 6:9–31

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170. doi:10.1073/pnas.91.8.3166

    Article  CAS  PubMed  Google Scholar 

  • Ede AJ, Pierson CA, Crawford AM (1995) Ovine microsatellites at the OarCP9, OarCP16, OarCP20, OarCP21, OarCP23 and OarCP26 loci. Anim Genet 25:129–130

    Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839. doi:10.1007/BF00221895

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864. doi:10.1046/j.1365-294X.2003.02004.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for populations genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  Google Scholar 

  • Forchhammer MC, Clutton-Brock TH, Lindstrøm J, Albon SD (2001) Climate and population density induce long-term cohort variation in a northern ungulate. J Anim Ecol 70:721–729. doi:10.1046/j.0021-8790.2001.00532.x

    Article  Google Scholar 

  • Forchhammer MC, Stenseth NC, Post E, Langvatn R (1998) Population dynamics of Norwegian red deer: density-dependence and climatic variation. Proc R Soc Lond B Biol Sci 265:341–350. doi:10.1098/rspb.1998.0301

    Article  CAS  Google Scholar 

  • Friis JA (1874) Tilfjelds i ferierne (in Norwegian). Cammermeyer, Christiania

    Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318. doi:10.1046/j.1365-294x.2001.01190.x

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Release 2.9.3.2. Available from http://www.unil.ch/izea/softwares/fstat.html

  • Gyllensten U, Ryman N, Reuterwall C, Dratch P (1983) Genetic differentiation in four European subspecies of red deer (Cervus elaphus L.). Heredity 51:561–580. doi:10.1038/hdy.1983.71

    Article  Google Scholar 

  • Haanes H, Rosef O, Veiberg V, Røed KH (2005) Microsatellites with variation and heredity applicable to parentage and population studies of Norwegian red deer (Cervus elaphus atlanticus). Anim Genet 36:454–455. doi:10.1111/j.1365-2052.2005.01343.x

    Article  CAS  PubMed  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer, Sunderland, US

    Google Scholar 

  • Hedrick PW (2000) Genetics of populations. Jones and Bartlett, Boston

    Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. doi:10.1038/35016000

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2001) Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol Ecol 10:537–549. doi:10.1046/j.1365-294x.2001.01202.x

    Article  CAS  PubMed  Google Scholar 

  • Hulme DJ, Silk JP, Redwin JM, Barendse W, Beh KJ (1994) Ten polymorphic ovine microsatellites. Anim Genet 25:434–435

    CAS  PubMed  Google Scholar 

  • Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291. doi:10.1038/hdy.1996.142

    Article  Google Scholar 

  • Ingebrigtsen O (1924) Hjortens utbredelse i Norge (in Norwegian). Bergens Museums Aarbok 1922–1923 Naturvitensk. Raekke 6:1–58

    Google Scholar 

  • IPCC (2001) Third assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge

    Google Scholar 

  • IPCC (2007) Fourth assessment report of the Intergovernmental Panel on Climate Change. http://www.ipcc.ch

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460. doi:10.1126/science.3420403

    Article  CAS  PubMed  Google Scholar 

  • Langvatn R (1988) Hjortens utbredelse i Norge-en oversigt. Villreinen 1:1–8 in Norwegian

    Google Scholar 

  • Langvatn R (1998) Hjortens erobring av Norge. In: Brox KH (ed) Brennpunkt natur (in Norwegian). Tapir Cop, Trondheim, pp 49–71

    Google Scholar 

  • Laval G, Excoffier L (2004) SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history. Bioinformatics 20:2485–2487. doi:10.1093/bioinformatics/bth264

    Article  CAS  PubMed  Google Scholar 

  • Lønnberg E (1906) On the geographic races of red deer in Scandinavia. Arkiv för Zoologi 3:1–19

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Moore SS, Byrne K, Berger KT et al (1994) Characterization of 65 bovine microsatellites. Mamm Genome 5:84–90. doi:10.1007/BF00292333

    Article  CAS  PubMed  Google Scholar 

  • Mysterud A, Stenseth NC, Yoccoz NG, Langvatn R, Steinheim G (2001) Nonlinear effects of large-scale climatic variability on wild and domestic herbivores. Nature 410:1096–1099. doi:10.1038/35074099

    Article  CAS  PubMed  Google Scholar 

  • Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2002) Large-scale habitat variability, delayed density effects and red deer populations in Norway. J Anim Ecol 71:569–580. doi:10.1046/j.1365-2656.2002.00622.x

    Article  Google Scholar 

  • Nei M et al (1975) The bottleneck effect and genetic variability in populations. Evol Int J Org Evol 29:1–10. doi:10.2307/2407137

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, NY

    Google Scholar 

  • Nei M (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170. doi:10.1007/BF02300753

    Article  CAS  PubMed  Google Scholar 

  • Nichols RA, Hewitt GM (1994) The genetic consequences of long-distance dispersal during colonization. Heredity 72:312–317. doi:10.1038/hdy.1994.41

    Article  Google Scholar 

  • Nunney L (2000) The limits to knowledge in conservation genetics; The value of effective population size. In: Clegg MT, Hecht MK, MacIntyre RJ (eds) The limits to knowledge in conservation genetics. Kluwer, NY, pp 179–194

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86. doi:10.1093/molbev/msg009

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version-1.2)—population-genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evol Int J Org Evol 43:223–225. doi:10.2307/2409177

    Google Scholar 

  • Røed KH (1998) Microsatellite variation in Scandinavian Cervidae using primers derived from Bovidae. Hereditas 129:19–25. doi:10.1111/j.1601-5223.1998.00019.x

    Article  PubMed  Google Scholar 

  • Røed KH, Midthjell L (1998) Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids. Mol Ecol 7:1773–1778

    PubMed  Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial-DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    CAS  PubMed  Google Scholar 

  • Soulé ME, Mills S (1992) Conservation genetics and conservation biology: a troubled marriage. In: Sandlund OT, Hindar K, Brown AHD (eds) Conservation of biodiversity for sustainable development. Scandinavian University Press, Oslo, pp 55–69

    Google Scholar 

  • Wang JL, Caballero A (1999) Developments in predicting the effective size of subdivided populations. Heredity 82:212–226. doi:10.1038/sj.hdy.6884670

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer, Sunderland

    Google Scholar 

  • Wilson GA, Strobeck C, Wu L, Coffin J (1997) Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol Ecol 6:697–699. doi:10.1046/j.1365-294X.1997.00237.x

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations. University of Chicago Press, Chicago

    Google Scholar 

  • Zachos F, Althoff C, Steynitz Y, Eckert I, Hartl G (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. Eur J Wildl Res 53:61–67. doi:10.1007/s10344-006-0065-z

    Article  Google Scholar 

Download references

Acknowledgments

For help providing samples we thank the section for wildlife diseases at the Norwegian national veterinary intitute, Dr. Jon M. Arnemo, Harald Holm, M. Pearson, Halvor Ovastrøm, Oddegeir Hårstad, the hunters that sent us samples, and the game managers in the counties and municipalities of Norway who organised much of the sampling. For help handling samples and in the laboratory we are in debt to Turid Vikøren, Astrid Stovner and Liv Midthjell. For helpful information about the SIMCOAL algorithm and its function we thank Dr. Christian N. K. Anderson at the department of biological sciences, Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Haanes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 66 kb)

(DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haanes, H., Røed, K.H., Flagstad, Ø. et al. Genetic structure in an expanding cervid population after population reduction. Conserv Genet 11, 11–20 (2010). https://doi.org/10.1007/s10592-008-9781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9781-0

Keywords

Navigation