Skip to main content
Log in

Integration of bat algorithm and salp swarm intelligence with stochastic difference variants for global optimization

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper introduces a novel hybrid optimization algorithm named bat-salp swarm algorithm (BASSA). BASSA integrates the local exploitation capability of bat algorithm (BA) and the global exploration capability of salp swarm algorithm (SSA). Firstly, by introducing the echolocation of BA, the follower updating strategy of SSA is improved. Secondly, the algorithm selects between BA and SSA based on specific conditions. Finally, individuals undergo random differential mutation to increase population diversity, thereby avoiding local optima. To verify the effectiveness of the algorithm, we carry out experiments BASSA on 23 benchmark functions with different dimensions and compare it with 7 optimization algorithms, including BA, SSA, and 7 enhanced versions of SSA. Simulation results indicate that BASSA outperforms standard BA, SSA, and other enhanced algorithms in terms of mean and standard deviation. This suggests a significant improvement in optimization performance, with higher solution accuracy and faster convergence speed. Additionally, through performance evaluation on three real engineering problems, the results indicate that BASSA possesses strong optimization capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data and materials supporting the results of this study have been clearly described in the manuscript. The key algorithms used in this study have been presented as pseudo-code in this paper and are also available upon request. We are committed to ensuring the transparency and accessibility of relevant data and resources to facilitate the reproducibility and validation of research results.

Abbreviations

\({N}_{BA},{N}_{SSA}\) :

The number of individuals in each algorithm

\({T}_{BA},{T}_{SSA}\) :

The number of iterations of the BA and SSA

\({r}_{i}^{t}\) :

The pulse emission rate

\({A}_{i}^{t}\) :

The acoustic loudness

\({c}_{2}\), \({c}_{3},\varepsilon ,\beta ,{{r}_{1},r}_{2}\) :

The random numbers

\(v{\left(i\right)}^{t},v{\left(i\right)}^{t+1}\) :

The velocity of the agent

\({x\left(i\right)}^{t},{x\left(i\right)}^{t+1}\) :

The position of the agent

α,:

The Acoustic Loudness Attenuation factor

γ,:

The Pulse frequency enhancement factor

T :

The maximum number of iterations

\({I}_{c}\left(t\right)\) :

The dispersion of population of each iteration

\(N\) :

The total number of samples

\({r}_{i}^{0}\) :

The maximum value of the pulse emission rate

NFE:

The number function evaluation

D:

The dimension of the problem solution space

\({x}_{ij}^{{\text{t}}+1}\) :

The new position of the updated particle

\({F}_{j}\) :

The position of the food

\({c}_{1}\) :

The balancing factor

\({f}_{max},{f}_{min}\) :

The upper and lower limits of the frequency

\({ub}_{j}\),\({lb}_{j}\) :

The upper and lower bounds of the escape space

\({x}_{best}^{t}\) :

The best agent in the population

\({x}_{j}^{1}\) :

The position of the leader salp swarm individual

t :

The current number of iterations

\({C}_{d}\left(t\right)\) :

The mass center

\(n\) :

The total number of dimensions

\(Di{v}_{max}\) :

The maximum diversity of the whole iteration

BASSA:

Integration Of Bat Algorithm And Salp Swarm Intelligence With Stochastic Difference Variants

BA:

Bat Algorithm

PSO:

Particle Swarm Optimizer

GP:

Genetic Programming

EP:

Evolutionary Programming

DE:

Differential Evolution

WWO:

Water Wave Optimization

EA:

Evolutionary Algorithms

CBO:

Collision Body Optimizer

KOA:

Kepler Optimization Algorithm

AOA:

Archimedean Optimization Algorithm

NOA:

Nuthatch Optimization Algorithm

FOX:

Fox Optimizer

SWO:

Spider Wasp Optimizer

GRO:

Gold Rush Optimization

IBQANA:

Improved Binary Quantum-Based Avian Navigation Optimizer Algorithm

QRBL:

Quasi-Reflection Learning

GOA:

Grasshopper Optimization Algorithm

OBL:

Opposition-Based Learning

IABC-EO:

Improved Artificial Bee Colony-Extremal Optimization

MTDE:

Multi-Trial Vector-Based Differential Evolution

QSSA:

Quantized Salp Swarm Algorithm

IWOA:

Improved Whale Optimization Algorithm

TLBO:

Teaching–Learning-Based Optimization

SFR:

Stagnation Finding And Replacing

RIME:

Rime Optimizer

HOA:

Horse Herd algorithm

GWCA:

Great Wall Construction Algorithm

WHO:

Wild Horse Optimizer

iSSA:

Salp Swarm Algorithm With Integrated Random Inertia Weight And Differential Mutation

RDSSA:

Improved Salp Swarm Algorithm With Decay Factor And Dynamic Learning

FKNN:

Fuzzy K-Nearest Neighbor

ISSA:

Improved Salp Swarm Algorithm

MBA:

Modified BA

AD:

Alzheimer’s Disease

ERIME:

Enhanced Rime Algorithm

ECSA:

Evolutionary Crow Search Algorithm

AO:

Aquila Optimizer

VBAO:

V-Shaped Binary Aquila Optimizer

CMS:

Communication Strategy

CMS:

Cuckoo Mutation Strategy

EBA:

Enhanced Bat Algorithm

DMBA:

Dynamic Membrane-Driven Bat Algorithm

MBADE:

Modified Bat Algorithm Hybridizing By Differential Evolution

RE:

Regularity Evolution

SI:

Swarm Intelligence

ANN:

Artificial Neural Network

SSA:

Salp Swarm Algorithm

GA:

Genetic Algorithms

ES:

Evolutionary Strategies

TSO:

Transient Search Optimizer

ABC:

Artificial Bee Colony

CSS:

Charging System Search

LSO:

Light Spectrum Optimizer

EVO:

Energy Valley Optimizer

WEO:

Water Evaporation Optimizer

RO:

Ray Optimizer

BO:

Bonobo Optimizer

SFO:

Sailfish Optimizer

COA:

Coati Optimization Algorithm

SOA:

Skill Optimization Algorithm

SGABA:

Simulated Annealing Gaussian Bat Algorithm

GWO:

Grey Wolf Optimization

WOA:

Whale Optimization Algorithm

EO:

Extremal Optimization

DMSSA:

Dual-Mutation Salp Swarm Algorithm

ADMS:

Adaptive differential evolution mutation strategy

GMLSSA:

Gravity-Based And Multi-Leader Search Strategy Salp Swarm Algoritm

TLSSA:

Teaching–learning Guided Salp Swarm Algorithm

MFO:

Moth-Flame Optimization

MFO-SFR:

Moth-Flame Optimization Stagnation Finding And Replacing

RUN:

Runge Kutta Optimizer

GKSO:

Genghis Khan Shark Optimizer

RFO:

Red Fox Optimization

CASSA:

Crazy Adaptive Salp Swarm Algorithm

LECUSSA:

Salp Swarm Algorithm With Levy Flight Strategy And Conditional Update

ALSSA:

Adaptive leader Salp Swarm Algorithm For Global Search

MSSA:

Improved Salp Swarm Algorithm

SSA:

Simulated Annealing Algorithm

MCI:

Mild Cognitive Impairment

NC:

Normal Controls

BSMO:

Binary Starling Murmuration Optimizer

SWO:

Spider Wasp Optimizer

SBAO:

S-Shaped Binary Aquila optimizer

MA:

Migration Algorithm

SRS:

Selective Replacement Strategy

DI-GWOCD:

Discrete Version Of The Improved Grey Wolf Optimizer For Effectively Detecting Communities Of Different Networks

TVSSA:

Time-varying Salp Swarm Algorithm

QSSALEO:

Quadratic Interpolation Salp Swarm-Based Local Escape Operator

ESSA:

Emended Salp Swarm Algorithm

MOEAS:

Multi Objective Evolutionary Algorithms

MAS:

Metaheuristic Algorithms

References

  1. Chen, H., Jiao, S., Heidari, A.A., et al.: An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Convers. Manag. 195, 927–942 (2019)

    Article  Google Scholar 

  2. Wang, M., Chen, H., Yang, B., et al.: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267, 69–84 (2017)

    Article  Google Scholar 

  3. Chen, H., Xu, Y., Wang, M., et al.: A balanced whale optimization algorithm for constrained engineering design problems. Appl. Math. Model. 71, 45–59 (2019)

    Article  MathSciNet  Google Scholar 

  4. Wang, M., Chen, H.: Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft Comput. 88, 105946 (2020)

    Article  Google Scholar 

  5. Kaveh, A., Farhoudi, N.: A new optimization method: dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013)

    Article  Google Scholar 

  6. Adam, S.P., Alexandropoulos, S.A.N., Pardalos, P.M., et al.: No free lunch theorem A review. In: Demetriou, I.C., Pardalos, P.M. (eds.) Approximation and Optimization Algorithms Complexity and Applications. Springer, Cham (2019)

    Google Scholar 

  7. Long, W.: An improved whale optimization algorithm based on stochastic differential mutation. China Sciencepaper 13(8), 937–942 (2018)

    Google Scholar 

  8. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: González, D.A., Pelta, C.C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12538-6_6

    Chapter  Google Scholar 

  9. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., et al.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  10. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  11. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algorithms. Artif. Intell. 40(1–3), 235–282 (1989)

    Article  Google Scholar 

  12. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  13. Zheng, Y.J.: Water wave optimization: a new nature-inspired metaheuristic. Comput. Op. Res. 55, 1–11 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kennedy, J., Eberhart, R.: Particle swarm optimization[C]//Proceedings of ICNN’95-international conference on neural networks. IEEE 4, 1942–1948 (1995)

    Google Scholar 

  15. Yildizdan, G., Baykan, Ö.K.: A novel modified bat algorithm hybridizing by differential evolution algorithm. Expert Syst. Appl. 141, 112949 (2020)

    Article  Google Scholar 

  16. Yılmaz, S., Küçüksille, E.U.: A new modification approach on bat algorithm for solving optimization problems. Appl. Soft Comput. 28, 259–275 (2015)

    Article  Google Scholar 

  17. Alsalibi, B., Abualigah, L., Khader, A.T.: A novel bat algorithm with dynamic membrane structure for optimization problems. Appl. Intell. 51, 1992–2017 (2021)

    Article  Google Scholar 

  18. Faris, H., Heidari, A.A., Ala’M, A.Z., et al.: Time-varying hierarchical chains of salps with random weight networks for feature selection. Expert Syst. Appl. 140, 112898 (2020)

    Article  Google Scholar 

  19. Nautiyal, B., Prakash, R., Vimal, V., et al.: Improved salp swarm algorithm with mutation schemes for solving global optimization and engineering problems. Eng. Comput. 38, 3927–3949 (2022)

    Article  Google Scholar 

  20. Qaraad, M., Amjad, S., Hussein, N.K., et al.: An innovative quadratic interpolation salp swarm-based local escape operator for large-scale global optimization problems and feature selection. Neural Comput. Appl. 34(20), 17663–17721 (2022)

    Article  Google Scholar 

  21. Kansal, V., Dhillon, J.S.: Emended salp swarm algorithm for multiobjective electric power dispatch problem. Appl. Soft Comput. 90, 106172 (2020)

    Article  Google Scholar 

  22. Su, H., Zhao, D., Heidari, A.A., et al.: RIME: a physics-based optimization. Neurocomputing 532, 183–214 (2023)

    Article  Google Scholar 

  23. Ahmadianfar, I., Heidari, A.A., Gandomi, A.H., et al.: RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 181, 115079 (2021)

    Article  Google Scholar 

  24. MiarNaeimi, F., Azizyan, G., Rashki, M.: Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems. Knowl.-Based Syst. 213, 106711 (2021)

    Article  Google Scholar 

  25. Hu, G., Guo, Y., Wei, G., et al.: Genghis Khan shark optimizer: a novel nature-inspired algorithm for engineering optimization. Adv. Eng. Inform. 58, 102210 (2023)

    Article  Google Scholar 

  26. Guan, Z., Ren, C., Niu, J., et al.: Great wall construction algorithm: a novel meta-heuristic algorithm for engineer problems. Expert Syst. Appl. 233, 120905 (2023)

    Article  Google Scholar 

  27. Zheng, R., Hussien, A.G., Jia, H.M., et al.: An improved wild horse optimizer for solving optimization problems. Mathematics 10(8), 1311 (2022)

    Article  Google Scholar 

  28. Połap, D., Woźniak, M.: Red fox optimization algorithm. Expert Syst. Appl. 166, 114107 (2021)

    Article  Google Scholar 

  29. Koza, J.R., Rice, J.P.: Automatic programming of robots using genetic programming. AAAI 92, 194–207 (1992)

    Google Scholar 

  30. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolut. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  31. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  32. Qais, M.H., Hasanien, H.M., Alghuwainem, S.: Transient search optimization: a new meta-heuristic optimization algorithm. Appl. Intell. 50, 3926–3941 (2020)

    Article  Google Scholar 

  33. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)

    Article  Google Scholar 

  34. Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213(3–4), 267–289 (2010)

    Article  Google Scholar 

  35. Abdel-Basset, M., Mohamed, R., Sallam, K.M., et al.: Light spectrum optimizer: a novel physics-inspired metaheuristic optimization algorithm. Mathematics 10(19), 3466 (2022)

    Article  Google Scholar 

  36. Azizi, M., Aickelin, U.A., Khorshidi, H., et al.: Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization. Sci. Rep. 13(1), 226 (2023)

    Article  Google Scholar 

  37. Abdel-Basset, M., Mohamed, R., Azeem, S.A.A., et al.: Kepler optimization algorithm: a new metaheuristic algorithm inspired by Kepler’s laws of planetary motion. Knowl. -Based Syst. 268, 110454 (2023)

    Article  Google Scholar 

  38. Kaveh, A., Bakhshpoori, T.: A new metaheuristic for continuous structural optimization: water evaporation optimization. Struct. Multidiscip. Optim. 54, 23–43 (2016)

    Article  Google Scholar 

  39. Hashim, F.A., Hussain, K., Houssein, E.H., et al.: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl. Intell. 51, 1531–1551 (2021)

    Article  Google Scholar 

  40. Kaveh, A., Khayatazad, M.: A new meta-heuristic method: ray optimization. Comput. Struct. 112, 283–294 (2012)

    Article  Google Scholar 

  41. Kano, T.: Review of interdisciplinary approach to swarm intelligence. J. Robot. Mechatron. 35(4), 890–895 (2023)

    Article  Google Scholar 

  42. Abdel-Basset, M., Mohamed, R., Jameel, M., et al.: Nutcracker optimizer: a novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems. Knowl.-Based Syst. 262, 110248 (2023)

    Article  Google Scholar 

  43. Das, A.K., Pratihar, D.K.: Bonobo optimizer (BO): an intelligent heuristic with self-adjusting parameters over continuous spaces and its applications to engineering problems. Appl. Intell. 52(3), 2942–2974 (2022)

    Article  Google Scholar 

  44. Mohammed, H., Rashid, T.: FOX: a FOX-inspired optimization algorithm. Appl. Intell. 53(1), 1030–1050 (2023)

    Article  Google Scholar 

  45. Shadravan, S., Naji, H.R., Bardsiri, V.K.: The Sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 80, 20–34 (2019)

    Article  Google Scholar 

  46. Abdel-Basset, M., Mohamed, R., Jameel, M., et al.: Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif. Intell. Rev. 56, 11675–11738 (2023)

    Article  Google Scholar 

  47. Dehghani, M., Montazeri, Z., Trojovská, E., et al.: Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 259, 110011 (2023)

    Article  Google Scholar 

  48. Zolf, K.: Gold rush optimizer: a new population-based metaheuristic algorithm. Op. Res. Decis. 33(1), 113–150 (2023)

    Google Scholar 

  49. Givi, H., Hubalovska, M.: Skill optimization algorithm: a new human-based metaheuristic technique. Comput. Mater. Continua. 74(1), 179–202 (2023)

    Article  Google Scholar 

  50. Trojovský, P., Dehghani, M.: Migration algorithm: a new human-based metaheuristic approach for solving optimization problems. CMES-Comput. Model. Eng. Sci. 137(2), 1695–1730 (2023)

    Google Scholar 

  51. Chou, J.S., Nguyen, N.M.: FBI inspired meta-optimization. Appl. Soft Comput. 93, 106339 (2020)

    Article  Google Scholar 

  52. Gupta, R., Chaudhary, N., Pal, S, K.: Hybrid model to improve Bat algorithm perfo-rmance[C]. International Conference on Advances in Computing, Communicati-ons and Informatics (ICACCI). IEEE. (2014). https://doi.org/10.1109/ICACCI.2014.6968649

  53. He, X., Ding, W.J., Yang, X.S.: Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Comput. Appl. 25, 459–468 (2014)

    Article  Google Scholar 

  54. Bezdan, T., Zivkovic, M., Bacanin, N., et al.: Multi-objective task scheduling in cloud computing environment by hybridized bat algorithm. J. Intell. Fuzzy Syst. 42(1), 411–423 (2022)

    Article  Google Scholar 

  55. Agrawal, U., Arora, J., Singh, R., et al.: Hybrid wolf-bat algorithm for optimization of connection weights in multi-layer perceptron. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 16(1), 1–20 (2020)

    Google Scholar 

  56. Yue, S., Zhang, H.: A hybrid grasshopper optimization algorithm with bat algorithm for global optimization. Multimedia Tools Appl. 80, 3863–3884 (2021)

    Article  Google Scholar 

  57. Luo, J., He, F., Yong, J.: An efficient and robust bat algorithm with fusion of opposition-based learning and whale optimization algorithm. Intell. Data Anal. 24(3), 581–606 (2020)

    Article  Google Scholar 

  58. Chen, M.R., Huang, Y.Y., Zeng, G.Q., et al.: An improved bat algorithm hybridized with extremal optimization and Boltzmann selection. Expert Syst. Appl. 175, 114812 (2021)

    Article  Google Scholar 

  59. Lin, C., Wang, P., Zhao, X., et al.: Double mutational salp swarm algorithm: from optimal performance design to analysis. J. Bion. Eng. 20(1), 184–211 (2023)

    Article  Google Scholar 

  60. Mahapatra, A.K., Panda, N., Pattanayak, B.K.: Quantized Salp Swarm Algorithm (QSSA) for optimal feature selection. Int. J. Inform. Technol. 15(2), 725–734 (2023)

    Google Scholar 

  61. Zhang, X., Liu, G., Zhao, K., et al.: Improved salp swarm algorithm based on gravitational search and multi-leader search strategies. AIMS Math. 8(3), 5099–5123 (2023)

    Article  MathSciNet  Google Scholar 

  62. Saafan, M.M., El-Gendy, E.M.: IWOSSA: an improved whale optimization salp swarm algorithm for solving optimization problems. Expert Syst. Appl. 176, 114901 (2021)

    Article  Google Scholar 

  63. Li, J., Ren, H., Chen, H., et al.: Teaching–learning guided salp swarm algorithm for global optimization tasks and feature selection. Soft. Comput. 27(23), 17887–17908 (2023)

    Article  Google Scholar 

  64. Nadimi-Shahraki, M.H., Zamani, H., Asghari Varzaneh, Z., et al.: A systematic review of the whale optimization algorithm: theoretical foundation, improvements, and hybridizations. Arch. Comput. Methods Eng. 30(7), 4113–4159 (2023)

    Article  Google Scholar 

  65. Lu, D., Yue, Y., Hu, Z., et al.: Effective detection of Alzheimer’s disease by optimizing fuzzy K-nearest neighbors based on salp swarm algorithm. Comput. Biol. Med. 159, 106930 (2023)

    Article  Google Scholar 

  66. Yu, X., Qin, W., Lin, X., et al.: Synergizing the enhanced RIME with fuzzy K-nearest neighbor for diagnose of pulmonary hypertension. Comput. Biol. Med. 165, 107408 (2023)

    Article  Google Scholar 

  67. Nadimi-Shahraki, M.H., Asghari Varzaneh, Z., Zamani, H., et al.: Binary starling murmuration optimizer algorithm to select effective features from medical data. Appl. Sci. 13(1), 564 (2022)

    Article  Google Scholar 

  68. Zamani, H., Nadimi-Shahraki, M.H.: An evolutionary crow search algorithm equipped with interactive memory mechanism to optimize artificial neural network for disease diagnosis. Biomed. Signal Process. Control 90, 105879 (2024)

    Article  Google Scholar 

  69. Nadimi-Shahraki, M.H., Taghian, S., Mirjalili, S., et al.: Binary aquila optimizer for selecting effective features from medical data: a COVID-19 case study. Mathematics (2022). https://doi.org/10.3390/math10111929

    Article  Google Scholar 

  70. Fatahi, A., Nadimi-Shahraki, M.H., Zamani, H.: An improved binary quantum-based avian navigation optimizer algorithm to select effective feature subset from medical data: A COVID-19 case study. J. Bion. Eng. 21, 426–446 (2023)

    Article  Google Scholar 

  71. Nadimi-Shahraki, M.H., Taghian, S., Mirjalili, S., et al.: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl. Soft Comput. 97, 106761 (2020)

    Article  Google Scholar 

  72. Chen, M.R., Chen, J.H., Zeng, G.Q., et al.: An improved artificial bee colony algorithm combined with extremal optimization and Boltzmann Selection probability. Swarm Evolut. Comput. 49, 158–177 (2019)

    Article  Google Scholar 

  73. Pang, J., Zhou, H., Tsai, Y.C., et al.: A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing. Comput. Ind. Eng. 123, 54–66 (2018)

    Article  Google Scholar 

  74. Lin, C., Wang, P., Heidari, A.A., et al.: A boosted communicational salp swarm algorithm: performance optimization and comprehensive analysis. J. Bion. Eng. 20(3), 1296–1332 (2023)

    Article  Google Scholar 

  75. Wang, S., Zhou, A.: Regularity evolution for multiobjective optimization. IEEE Tr-ansactions Evolut. Comput. (2023). https://doi.org/10.1109/TEVC.2023.3306523

    Article  Google Scholar 

  76. Nadimi-Shahraki, M.H., Zamani, H., Fatahi, A., et al.: MFO-SFR: An enhanced moth-flame optimization algorithm using an effective stagnation finding and replacing strategy. Mathematics 11(4), 862 (2023)

    Article  Google Scholar 

  77. Nadimi-Shahraki, M.H., Moeini, E., Taghian, S., et al.: Discrete improved grey wolf optimizer for community detection. J. Bion. Eng. 20(5), 2331–2358 (2023)

    Article  Google Scholar 

  78. Handbook of Research on Fireworks Algorithms and Swarm Intelligence [M]. IGI Global (2019)

  79. Molga, M., Smutnicki, C.: Test functions for optimization needs. Test Funct. Optim. Needs 101, 48 (2005)

    Google Scholar 

  80. Nadimi-Shahraki, M.H., Zamani, H.: DMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimization. Expert Syst. Appl. 198, 116895 (2022)

    Article  Google Scholar 

  81. Van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inform. Sci. 176(8), 937–971 (2006)

    Article  MathSciNet  Google Scholar 

  82. Damin, Z., Zhongyun, C., Ziyun, X.: An algorithm based on crazy adaptive salp swarm algorithm. Control Decis. 35(9), 2112–2120 (2020)

    Google Scholar 

  83. Fan, Z.H.A.N.G., Lei, W.A.N.G., Juan, Z.H.A.O., Lei, W.U.: Application of salp swarm algorithm in optimal power flow calculation for power system. Distributed Energy. 6(1), 35–43 (2021)

    Google Scholar 

  84. Qin, L.X.: Improved Salp swarm algorithm based on levy flight strategy. Comput. Sci. 47(7), 154–160 (2020)

    Google Scholar 

  85. Zhang, Z., Lu, X., Sui, L., Li, J.: Salp swarm algorithm with random inertia weight and differential mutation operator. Comput. Sci. 47(8), 297–301 (2020)

    Google Scholar 

  86. Lei, C., Yue, L., Zhi-long, K.: Improved salp swarm algorithm based on reduction factor and dynamic learning. Control Theory Appl. 37(8), 1766–1780 (2020)

    Google Scholar 

  87. Liu, J.S., Yuan, M.M., Zuo, F.: Global search-oriented adaptive leader salp swarm algorithm. Control Decis. 9, 2152–2160 (2021)

    Google Scholar 

  88. Chen, L., Mu, Y.: Improved salp swarm algorithm. Appl. Res. Comput. /Jisuanji Yingyong Yanjiu 38(6), 1234–1258 (2021)

    Google Scholar 

  89. Wu, G., Mallipeddi, R., Suganthan, P, N.: Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report (2017)

  90. Alcalá-Fdez, J., Sanchez, L., Garcia, S., et al.: KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft. Comput. 13, 307–318 (2009)

    Article  Google Scholar 

  91. Dehghani, M., Trojovská, E., Trojovský, P., et al.: OOBO: a new metaheuristic algorithm for solving optimization problems. Biomimetics 8(6), 468 (2023)

    Article  Google Scholar 

  92. Tsai, J.F.: Global optimization of nonlinear fractional programming problems in engineering design. Eng. Optim. 37(4), 399–409 (2005)

    Article  MathSciNet  Google Scholar 

  93. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29, 17–35 (2013)

    Article  Google Scholar 

  94. Zhang, M., Luo, W., Wang, X.: Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 178(15), 3043–3074 (2008)

    Article  Google Scholar 

  95. Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)

    Article  Google Scholar 

  96. Sadollah, A., Bahreininejad, A., Eskandar, H., et al.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)

    Article  Google Scholar 

  97. Wang, G.G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31, 1995–2014 (2019). https://doi.org/10.1007/s00521-015-1923-y

    Article  Google Scholar 

  98. Heidari, A.A., Mirjalili, S., Faris, H., et al.: Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  99. Ahmadianfar, I., Heidari, A.A., Noshadian, S., et al.: INFO: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 195, 116516 (2019)

    Article  Google Scholar 

  100. Li, S., Chen, H., Wang, M., et al.: Slime mould algorithm: a new method for stochastic optimization. Futur. Gener. Comput. Syst. 111, 300–323 (2020)

    Article  Google Scholar 

  101. Faramarzi, A., Heidarinejad, M., Mirjalili, S., et al.: Marine Predators algorithm: a nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020)

    Article  Google Scholar 

  102. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  103. Wang, K., Guo, M., Dai, C., et al.: Information-decision searching algorithm: theory and applications for solving engineering optimization problems. Inf. Sci. 607, 1465–1531 (2022)

    Article  Google Scholar 

  104. Hashim, F.A., Hussien, A.G.: Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl. -Based Syst. 242, 108320 (2022)

    Article  Google Scholar 

  105. Zhao, S., Zhang, T., Ma, S., et al.: Dandelion optimizer: a nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 114, 105075 (2022)

    Article  Google Scholar 

Download references

Funding

This work was supported by the research projects: the National Natural Science Foundation of China under Grant Nos. 62202378, 62002289, 62176146, Natural Science Foundation of Shaanxi Province nos. 2021JQ-711, Shaanxi Provincial Department of Education Fund nos. 20JK0910.

Author information

Authors and Affiliations

Authors

Contributions

Hongye Li: Algorithms, Writing, Revision. Jianan Wang: Preprocessing, Coding, Algorithms, Writing, Editing. Yabing Li: Methods, Writing, Editing, Revision.

Corresponding author

Correspondence to Jianan Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Test functions

See Tables 23 and 24.

Table 23 The characteristics of the 23 classical benchmark functions
Table 24 Summary of the 29 CEC 2017 benchmark problems

Appendix B. Evaluation Metrics

Mean value

The mean (\(\overline{x }\)) reflects the average of all observations in the sample. It is calculated using Eq. (31). It is calculated by adding all the results and dividing by the total number of results \(N\), where \({x}_{i}\) represents each observation in the sample.

$$\overline{x }=\frac{1}{N}\sum_{i=1}^{N}{x}_{i}$$
(31)

Standard deviation

Standard deviation (STD) is a measure of variation or dispersion in a set of data. A larger standard deviation indicates that the values are more different from the mean, while a smaller standard deviation indicates that these values are closer to the mean. Usually, a smaller standard deviation is considered better because it indicates relatively more stable data. The formula is shown in Eq. (32) where \(N\) denotes the total number of outcomes in the sample, \({x}_{i}\) is one of the samples, and \(\overline{x }\) is the sample mean.

$$STD=\sqrt{\frac{1}{N-1}\sum_{i=1}^{N}{\left({x}_{i}-\overline{x }\right)}^{2}}$$
(32)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, J. & Zhu, Y. Integration of bat algorithm and salp swarm intelligence with stochastic difference variants for global optimization. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04447-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04447-x

Keywords

Navigation