Skip to main content
Log in

Spider wasp optimizer: a novel meta-heuristic optimization algorithm

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

This work presents a new nature-inspired meta-heuristic algorithm named spider wasp optimization (SWO) algorithm, which is based on replicating the hunting, nesting, and mating behaviors of the female spider wasps in nature. This proposed algorithm has various unique updating strategies, making it applicable to a wide range of optimization problems with different exploration and exploitation requirements. The proposed SWO is compared with nine newly published and well-established metaheuristics over four different benchmarks: (1) Standard benchmark, including 23 unimodal and multimodal test functions; (2) test suite of CEC2017, (3) test suite of CEC2020, and (4) test suite of CEC2014 to validate its reliability. Moreover, two classical engineering design problems, namely, welded bean and pressure vessel designs, and parameter estimation of the single-diode, double-diode, and triple-diode photovoltaic models are used to further evaluate the performance of SWO in optimizing real-world optimization problems. Experimental findings demonstrate that SWO is more competitive compared with the state-of-art meta-heuristic methods for four validated benchmarks and superior to all observed real-world optimization problems. Specifically, SWO achieves an overall effective percentage of 78.2% on the standard benchmark, 92.31% on CEC2014, 77.78% on CEC2017, 60% on CEC2020, and 100% on real-world problems. The source code of SWO is publicly available at https://www.mathworks.com/matlabcentral/fileexchange/126010-spider-wasp-optimizer-swo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S (2021a) Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst 36(10):5887–5958

    Google Scholar 

  • Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021b) African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng 158:107408

    Google Scholar 

  • Aguiar AP et al (2013) Order Hymenoptera, In: Zhang, Z.Q. (Ed.) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Zootaxa 3703(1):51–62

    Google Scholar 

  • Alavi M, Henderson JC (1981) An evolutionary strategy for implementing a decision support system. Manage Sci 27(11):1309–1323

    Google Scholar 

  • Askari Q, Younas I, Saeed M (2020) Political Optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl-Based Syst 195:105709

    Google Scholar 

  • Auko T, Silvestre R, Pitts J (2013) Nest camouflage in the spider wasp Priochilus captivum (Fabricius, 1804)(Hymenoptera: Pompilidae), with notes on the biology. Trop Zool 26(3):140–144

    Google Scholar 

  • Awad NH, Ali MZ, Suganthan PN (2017) Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. 2017 IEEE congress on evolutionary computation (CEC). IEEE

    Google Scholar 

  • Benamu M et al (2020) Koinobint life style of the spider wasp Minagenia (Hymenoptera, Pompilidae) and its consequences for host selection and sex allocation. Zoology 140:125797

    Google Scholar 

  • Bianchi L et al (2009) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput 8:239–287

    MathSciNet  MATH  Google Scholar 

  • Birbil Şİ, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Global Optim 25(3):263–282

    MathSciNet  MATH  Google Scholar 

  • Bodaghi M, Samieefar K (2019) Meta-heuristic bus transportation algorithm. Iran J Comput Sci 2:23–32

    Google Scholar 

  • Bolaji ALA et al (2016) A comprehensive review: Krill Herd algorithm (KH) and its applications. Appl Soft Comput 49:437–446

    Google Scholar 

  • Carvalho-Filho FDS, Auko TH, Waichert C (2015) Observations on the nesting behaviour of the spider wasp Eragenia congrua (Hymenoptera: Pompilidae), with the first record of the host. J Nat Hist 49(33–34):2035–2044

    Google Scholar 

  • Charnov EL et al (1981) Sex ratio evolution in a variable environment. Nature 289(5793):27–33

    Google Scholar 

  • Chen X et al (2018) Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation. Appl Energy 212:1578–1588

    Google Scholar 

  • Chou J-S, Truong D-N (2021) A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl Math Comput 389:125535

    MathSciNet  MATH  Google Scholar 

  • Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. Pacific Rim International Conference on Artificial Intelligence. Springer

    Google Scholar 

  • Chuang CL, Jiang JA (2007) Integrated radiation optimization: inspired by the gravitational radiation in the curvature of space-time. 2007 IEEE congress on evolutionary computation. IEEE

    Google Scholar 

  • Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Google Scholar 

  • Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. International conference on natural computation. Springer

    Google Scholar 

  • Easwarakhanthan T et al (1986) Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int J Solar Energy 4(1):1–12

    Google Scholar 

  • Endo T, Endo A (1994) Prey selection by a spider wasp, Batozonellus lacerticida (Hymenoptera: Pompilidae): effects of seasonal variation in prey species, size and density. Ecol Res 9:225–235

    Google Scholar 

  • Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37(2):106–111

    Google Scholar 

  • Evans H, Shimizu A (1996) The evolution of nest building and communal nesting in Ageniellini (Insecta: Hymenoptera: Pompilidae). J Nat Hist 30(11):1633–1648

    Google Scholar 

  • Faramarzi A et al (2020a) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:105190

    Google Scholar 

  • Faramarzi A et al (2020b) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377

    Google Scholar 

  • Flores JJ, López R, Barrera J (2011) Gravitational interactions optimization. Learning and intelligent optimization: 5th interenational conference, LION 5, Rome, Italy, January 17-21, 2011 selected papers 5. Springer

    Google Scholar 

  • Formato RA (2007) Central force optimization. Prog Electromagn Res 77(1):425–491

    Google Scholar 

  • Fossum JG, Lindholm FA (1980) Theory of grain-boundary and intragrain recombination currents in polysilicon pn-junction solar cells. IEEE Trans Electron Devices 27(4):692–700

    Google Scholar 

  • Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Google Scholar 

  • Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl Soft Comput 19:177–187

    Google Scholar 

  • Glover FW, Kochenberger GA (2006) Handbook of metaheuristics, vol 57. Springer Science & Business Media

    MATH  Google Scholar 

  • Gong W, Cai Z (2013) Parameter extraction of solar cell models using repaired adaptive differential evolution. Sol Energy 94:209–220

    Google Scholar 

  • Grissell E (1997) The hymenoptera of costa rica. Oxford University Press, Oxford

    Google Scholar 

  • Hashim FA et al (2019) Henry gas solubility optimization: a novel physics-based algorithm. Futur Gener Comput Syst 101:646–667

    Google Scholar 

  • Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Google Scholar 

  • Hsiao YT et al (2005) A novel optimization algorithm: space gravitational optimization. 2005 IEEE international conference on systems, man and cybernetics. IEEE

    Google Scholar 

  • Javidy B, Hatamlou A, Mirjalili S (2015) Ions motion algorithm for solving optimization problems. Appl Soft Comput 32:72–79

    Google Scholar 

  • Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Google Scholar 

  • Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3):267–289

    MATH  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of ICNN’95-international conference on neural networks. IEEE

    Google Scholar 

  • King BH (1988) Sex-ratio manipulation in response to host size by the parasitoid wasp Spalangia cameroni: a laboratory study. Evolution 42(6):1190–1198

    Google Scholar 

  • Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  • Koohi-Kamali S et al (2016) Photovoltaic electricity generator dynamic modeling methods for smart grid applications: a review. Renew Sustain Energy Rev 57:131–172

    Google Scholar 

  • Koza JR, Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT press

    MATH  Google Scholar 

  • Kumar M, Kulkarni AJ, Satapathy SC (2018) Socio evolution & learning optimization algorithm: a socio-inspired optimization methodology. Future Gener Comput Syst 81:252–272

    Google Scholar 

  • Kurczewski FE, Edwards G (2012) Hosts, nesting behavior, and ecology of some North American spider wasps (Hymenoptera: Pompilidae). Southeast Nat 11(m4):1–71

    Google Scholar 

  • Kurczewski FE, Kiernan DH (2015) Analysis of spider wasp host selection in the eastern Great Lakes Region (Hymenoptera: Pompilidae). Northeast Nat 22(m11):1–88

    Google Scholar 

  • Li S et al (2019) Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization. Energy Convers Manage 186:293–305

    Google Scholar 

  • Li S et al (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323

    Google Scholar 

  • Loktionov V, Lelej A, Liu J-X (2019) A new genus of spider wasps (Hymenoptera, Pompilidae) from China. Far Eastern Entomol 376:1–14

    Google Scholar 

  • Meng X et al (2014) A new bio-inspired algorithm: chicken swarm optimization. International Conference in Swarm Intelligence. Springer

    Google Scholar 

  • MiarNaeimi F, Azizyan G, Rashki M (2021) Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems. Knowl-Based Syst 213:106711

    Google Scholar 

  • Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  • Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Google Scholar 

  • Mirjalili S et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  • Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. Cornell University

    MATH  Google Scholar 

  • Moosavian N, Roodsari BK (2014) Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm Evol Comput 17:14–24

    Google Scholar 

  • Nadimi-Shahraki MH, Zamani H (2022) DMDE: diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimization. Expert Syst Appl 198:116895

    Google Scholar 

  • Naik A, Satapathy SC (2021) Past present future: a new human-based algorithm for stochastic optimization. Soft Comput 25(20):12915–12976

    Google Scholar 

  • Nieves-Aldrey J, Fontal-Cazalla F, Fernández F (2006) Introducción a los Hymenoptera de la Región Neotropical. Universidad Nacional de Colombia

    Google Scholar 

  • Nishimoto Y et al (2021) Life history and nesting ecology of a Japanese tube-nesting spider wasp Dipogon sperconsus (Hymenoptera: Pompilidae). Sci Rep 11(1):1–11

    Google Scholar 

  • Nunes H et al (2018) A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization. Appl Energy 211:774–791

    Google Scholar 

  • Opp SB, Luck RF (1986) Effects of host size on selected fitness components of Aphytis melinus and A. lingnanensis (Hymenoptera: Aphelinidae). Ann Entomol Soc Am 79(4):700–704

    Google Scholar 

  • Pinto PC, Runkler TA, Sousa JM (2007) Wasp swarm algorithm for dynamic MAX-SAT problems. International conference on adaptive and natural computing algorithms. Springer

    Google Scholar 

  • Pitts JP, Wasbauer MS, Von Dohlen CD (2006) Preliminary morphological analysis of relationships between the spider wasp subfamilies (Hymenoptera: Pompilidae): revisiting an old problem. Zoolog Scr 35(1):63–84

    Google Scholar 

  • Połap D, Woźniak M (2021) Red fox optimization algorithm. Expert Syst Appl 166:114107

    Google Scholar 

  • Price KV (2013) Differential evolution. Handbook of optimization. Springer, pp 187–214

    Google Scholar 

  • Punzo F (1994) The biology of the spider wasp Pepsis thisbe (Hymenoptera: Pompilidae) from trans Pecos, Texas I adult morphometrics, larval development and the ontogeny of larval feeding patterns. Psyche 101(3–4):229–241

    Google Scholar 

  • Rabanal P, Rodríguez I, Rubio F (2007) Using river formation dynamics to design heuristic algorithms. International conference on unconventional computation. Springer

    Google Scholar 

  • Rao RV, Savsani VJ, Vakharia D (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Google Scholar 

  • Rayor LS (1996) Attack strategies of predatory wasps (Hymenoptera: Pompilidae; Sphecidae) on colonial orb web-building spiders (Araneidae: Metepeira incrassata). J Kansas Entomol Soc 1996:67–75

    Google Scholar 

  • Sacco WF, Oliveira C (2005) A new stochastic optimization algorithm based on a particle collision metaheuristic. Proceedings of 6th WCSMO

    Google Scholar 

  • Sahab MG, Toropov VV, Gandomi AH (2013) A review on traditional and modern structural optimization: problems and techniques. Metaheuristic applications in structures and infrastructures. Elsevier, pp 25–47

    Google Scholar 

  • Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio-Inspir Comput 1(1–2):71–79

    Google Scholar 

  • Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6(1–2):132–140

    Google Scholar 

  • Shamsaldin AS et al (2019) Donkey and smuggler optimization algorithm: a collaborative working approach to path finding. J Comput Design Eng 6(4):562–583

    Google Scholar 

  • Shi Y (2011) Brain storm optimization algorithm. International conference in swarm intelligence. Springer

    Google Scholar 

  • Shimizu A (1992) Nesting behavior of the semi-aquatic spider wasp, Anoplius eous, which transports its prey on the surface film of water (Hymenoptera, Pompilidae). J Ethol 10(2):85–102

    Google Scholar 

  • Shimizu A, Wasbauer M, Takami Y (2010) Phylogeny and the evolution of nesting behaviour in the tribe Ageniellini (Insecta: Hymenoptera: Pompilidae). Zool J Linn Soc 160(1):88–117

    Google Scholar 

  • Shimizu A et al (2012) Brood parasitism in two species of spider wasps (Hymenoptera: Pompilidae, Dipogon), with notes on a novel reproductive strategy. J Insect Behavior 25:375–391

    Google Scholar 

  • Starr C (2012) Nesting biology and sex ratio in a Neotropical spider wasp, Priochilus captivum (Hymenoptera: Pompilidae). Trop Zool 25(2):62–66

    Google Scholar 

  • Tan YT, Kirschen DS, Jenkins N (2004) A model of PV generation suitable for stability analysis. IEEE Trans Energy Convers 19(4):748–755

    Google Scholar 

  • Wahis R, Lelej A, Loktionov V (2018) Contribution to the knowledge of the genus Eopompilus Gussakovskij, 1932 (Hymenoptera, Pompilidae). Far Eastern Entomologist 361:1–11

    Google Scholar 

  • Waichert C et al (2015) Molecular phylogeny and systematics of spider wasps (Hymenoptera: Pompilidae): redefining subfamily boundaries and the origin of the family. Zool J Linn Soc 175(2):271–287

    Google Scholar 

  • Wang GG, Deb S, Coelho LDS (2015) Elephant herding optimization. 2015 3rd international symposium on computational and business intelligence (ISCBI). IEEE

    Google Scholar 

  • Webster B, Bernhard PJ (2003) A local search optimization algorithm based on natural principles of gravitation. Proceeding of the 2003 international conference on information and knowledge engineering (IKE’03). Florida Tech, USA, pp 23–26

    Google Scholar 

  • Xie L, Zeng J, Cui Z (2009) General framework of artificial physics optimization algorithm. 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE

    Google Scholar 

  • Yang XS (2012) Swarm-based metaheuristic algorithms and no-free-lunch theorems. Theory New Appl Swarm Intell 9:1–16

    Google Scholar 

  • Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 2012:1–10

    Google Scholar 

  • Yang XS, Ting T, Karamanoglu M (2013) Random walks, Lévy flights, Markov chains and metaheuristic optimization. Future Info Commun Technol Appl ICFICE 2013:1055–1064

    Google Scholar 

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Google Scholar 

  • Yu K et al (2017) Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers Manage 150:742–753

    Google Scholar 

  • Yu K et al (2018) Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl Energy 226:408–422

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abouhawwash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Table 18.

See Fig. 24.

See Tables 19, 20, 21.

Table 18 Description of some standard test functions
Fig. 24
figure 24

Topologies of some mathematical test functions in standard benchmark

Table 19 Properties of 18 CEC-2017 test functions
Table 20 Properties of 13 CEC-2014 test functions
Table 21 Characteristics of CEC-2020 test functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Basset, M., Mohamed, R., Jameel, M. et al. Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif Intell Rev 56, 11675–11738 (2023). https://doi.org/10.1007/s10462-023-10446-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-023-10446-y

Keywords

Navigation