Skip to main content
Log in

A Boosted Communicational Salp Swarm Algorithm: Performance Optimization and Comprehensive Analysis

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The Salp Swarm Algorithm (SSA) is a recently proposed swarm intelligence algorithm inspired by salps, a marine creature similar to jellyfish. Despite its simple structure and solid exploratory ability, SSA suffers from low convergence accuracy and slow convergence speed when dealing with some complex problems. Therefore, this paper proposes an improved algorithm based on SSA and adds three improvements. First, the Real-time Update Mechanism (RUM) underwrites the role of ensuring that excellent individual information will not be lost and information exchange will not lag in the iterative process. Second, the Communication Strategy (CMS), on the other hand, uses the multiplicative relationship of multiple individuals to regulate the exploration and exploitation process dynamically. Third, the Selective Replacement Strategy (SRS) is designed to adaptively adjust the variance ratio of individuals to enhance the accuracy and depth of convergence. The new proposal presented in this study is named RCSSSA. The global optimization capability of the algorithm was tested against various high-performance and novel algorithms at IEEE CEC 2014, and its constrained optimization capability was tested at IEEE CEC 2011. The experimental results demonstrate that the proposed algorithm can converge faster while obtaining better optimization results than traditional swarm intelligence and other improved algorithms. The statistical data in the table support its optimization capabilities, and multiple graphs deepen the understanding and analysis of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

The data involved in this study are all public data, which can be downloaded through public channels.

References

  1. Li, Y., Wang, G., Chen, H. L., Shi, L., & Qin, L. (2013). An ant colony optimization based dimension reduction method for high-dimensional datasets. Journal of Bionic Engineering, 10(2), 231–241. https://doi.org/10.1016/S1672-6529(13)60219-X

    Article  Google Scholar 

  2. Ridha, H. M., Gomes, C., Hizam, H., Ahmadipour, M., Heidari, A. A., & Chen, H. L. (2021). Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review. Renewable & Sustainable Energy Reviews, 135, 110202. https://doi.org/10.1016/j.rser.2020.110202

    Article  Google Scholar 

  3. Liu, Y., Chong, G. S., Heidari, A. A., Chen, H. L., Liang, G. X., Ye, X. J., Cai, Z. N., & Wangg, M. J. (2020). Horizontal and vertical crossover of harris hawk optimizer with nelder-mead simplex for parameter estimation of photovoltaic models. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2020.113211

    Article  Google Scholar 

  4. Yu, H. L., Zhao, N. N., Wang, P. J., Chen, H. L., & Li, C. Y. (2020). Chaos-enhanced synchronized bat optimizer. Applied Mathematical Modelling, 77, 1201–1215. https://doi.org/10.1016/j.apm.2019.09.029

    Article  Google Scholar 

  5. Gupta, S., Deep, K., Heidari, A. A., Moayedi, H., & Chen, H. L. (2021). Harmonized salp chain-built optimization. Engineering with Computers, 37(2), 1049–1079. https://doi.org/10.1007/s00366-019-00871-5

    Article  Google Scholar 

  6. Lin, A. J., Wu, Q. Q., Heidari, A. A., Xu, Y. T., Chen, H. L., Geng, W. J., Li, Y. P., & Li, C. Y. (2019). Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy k-nearest neighbor classifier. IEEE Access, 7, 67235–67248. https://doi.org/10.1109/Access.2019.2918026

    Article  Google Scholar 

  7. Chen, H. L., Li, S. M., Heidari, A. A., Wang, P. J., Li, J. W., Yang, Y. T., Wang, M. J., & Huang, C. C. (2020). Efficient multi-population outpost fruit fly-driven optimizers: Framework and advances in support vector machines. Expert Systems with Applications, 142, 112999. https://doi.org/10.1016/j.eswa.2019.112999

    Article  Google Scholar 

  8. Zhang, Q., Chen, H. L., Heidari, A. A., Zhao, X. H., Xu, Y. Y., Wang, P. J., Li, Y. P., & Li, C. Y. (2019). Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers. IEEE Access, 7, 31243–31261. https://doi.org/10.1109/Access.2019.2902306

    Article  Google Scholar 

  9. Chen, H., Heidari, A. A., Zhao, X. H., Zhang, L. J., & Chen, H. L. (2020). Advanced orthogonal learning-driven multi-swarm sine cosine optimization: Framework and case studies. Expert Systems with Applications, 144, 113113. https://doi.org/10.1016/j.eswa.2019.113113

    Article  Google Scholar 

  10. Xu, Z. Z., Hu, Z. Y., Heidari, A. A., Wang, M. J., Zhao, X. H., Chen, H. L., & Cai, X. D. (2020). Orthogonally-designed adapted grasshopper optimization: A comprehensive analysis. Expert Systems with Applications, 150, 113282. https://doi.org/10.1016/j.eswa.2020.113282

    Article  Google Scholar 

  11. Cao, B., Zhang, W. Z., Wang, X. S., Zhao, J. W., Gu, Y., & Zhang, Y. (2021). A memetic algorithm based on two_arch2 for multi-depot heterogeneous-vehicle capacitated arc routing problem. Swarm and Evolutionary Computation, 63, 100864. https://doi.org/10.1016/j.swevo.2021.100864

    Article  Google Scholar 

  12. Zhang, J. Z., Zhu, C. Y., Zheng, L. T., & Xu, K. (2021). Rosefusion: Random optimization for online dense reconstruction under fast camera motion. ACM Transactions on Graphics (TOG), 40(4), 1–17.

    Google Scholar 

  13. Mou, J. H., Duan, P. Y., Gao, L., Liu, X. H., & Li, J. Q. (2022). An effective hybrid collaborative algorithm for energy-efficient distributed permutation flow-shop inverse scheduling. Future Generation Computer Systems, 128, 521–537.

    Article  Google Scholar 

  14. Zhang, M. W., Chen, Y., & Lin, J. Q. (2021). A privacy-preserving optimization of neighborhood-based recommendation for medical-aided diagnosis and treatment. Ieee Internet of Things Journal, 8(13), 10830–10842. https://doi.org/10.1109/Jiot.2021.3051060

    Article  Google Scholar 

  15. Zhang, H., Luo, G. Y., Li, J. L., & Wang, F. Y. (2022). C2fda: Coarse-to-fine domain adaptation for traffic object detection. Ieee Transactions on Intelligent Transportation Systems, 23(8), 12633–12647. https://doi.org/10.1109/tits.2021.3115823

    Article  Google Scholar 

  16. Zhan, Z. H., Shi, L., Tan, K. C., & Zhang, J. (2022). A survey on evolutionary computation for complex continuous optimization. Artificial Intelligence Review, 55(1), 59–110. https://doi.org/10.1007/s10462-021-10042-y

    Article  Google Scholar 

  17. Xia, J., Wang, Z., Yang, D., Li, R., Liang, G., Chen, H., Heidari, A. A., Turabieh, H., Mafarja, M., & Pan, Z. (2022). Performance optimization of support vector machine with oppositional grasshopper optimization for acute appendicitis diagnosis. Computers in Biology and Medicine, 143, 105206. https://doi.org/10.1016/j.compbiomed.2021.105206

    Article  Google Scholar 

  18. Xia, J., Yang, D., Zhou, H., Chen, Y., Zhang, H., Liu, T., Heidari, A. A., Chen, H., & Pan, Z. (2022). Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm. Computers in Biology and Medicine, 141, 105137. https://doi.org/10.1016/j.compbiomed.2021.105137

    Article  Google Scholar 

  19. Hu, J., Han, Z., Heidari, A. A., Shou, Y., Ye, H., Wang, L., Huang, X., Chen, H., Chen, Y., & Wu, P. (2022). Detection of covid-19 severity using blood gas analysis parameters and harris hawks optimized extreme learning machine. Computers in Biology and Medicine, 142, 105166. https://doi.org/10.1016/j.compbiomed.2021.105166

    Article  Google Scholar 

  20. Zhan, Z. H., Wang, Z. J., Jin, H., & Zhang, J. (2019). Adaptive distributed differential evolution. IEEE Trans Cybern, 50(11), 4633–4647. https://doi.org/10.1109/TCYB.2019.2944873

    Article  Google Scholar 

  21. Zhan, Z. H., Liu, X. F., Zhang, H. X., Yu, Z. T., Weng, J., Li, Y., Gu, T. L., & Zhang, J. (2016). Cloudde: A heterogeneous differential evolution algorithm and its distributed cloud version. IEEE Transactions on Parallel and Distributed Systems, 28(3), 704–716.

    Article  Google Scholar 

  22. Cao, B., Gu, Y., Lv, Z. H., Yang, S., Zhao, J. W., & Li, Y. J. (2021). Rfid reader anticollision based on distributed parallel particle swarm optimization. Ieee Internet of Things Journal, 8(5), 3099–3107. https://doi.org/10.1109/Jiot.2020.3033473

    Article  Google Scholar 

  23. Sun, G. J., Li, C. L., & Deng, L. B. (2021). An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Computing & Applications, 33(15), 9503–9519. https://doi.org/10.1007/s00521-021-05708-1

    Article  Google Scholar 

  24. Mirjalili, S., Dong, J. S., & Lewis, A. (2019). Nature-inspired optimizers: Theories, literature reviews and applications (Vol. 811). Berlin: Springer.

    Google Scholar 

  25. Li, S. M., Chen, H. L., Wang, M. J., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems—The International Journal of Escience, 111, 300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  26. Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X. F., & Chen, H. L. (2021). Run beyond the metaphor: An efficient optimization algorithm based on runge kutta method. Expert Systems with Applications, 181, 115079. https://doi.org/10.1016/j.eswa.2021.115079

    Article  Google Scholar 

  27. Ahmadianfar, I., Heidari, A. A., Noshadian, S., Chen, H. L., & Gandomi, A. H. (2022). Info: An efficient optimization algorithm based on weighted mean of vectors. Expert Systems with Applications, 195, 116516. https://doi.org/10.1016/j.eswa.2022.116516

    Article  Google Scholar 

  28. Wang, Y. T., Han, X. F., & Jin, S. F. (2022). Map based modeling method and performance study of a task offloading scheme with time-correlated traffic and vm repair in mec systems. Wireless Networks. https://doi.org/10.1007/s11276-022-03099-2

    Article  Google Scholar 

  29. Yang, Y. T., Chen, H. L., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864. https://doi.org/10.1016/j.eswa.2021.114864

    Article  Google Scholar 

  30. Zhu, B., Zhong, Q., Chen, Y., Liao, S., Li, Z., Shi, K., & Sotelo, M. A. (2022). A novel reconstruction method for temperature distribution measurement based on ultrasonic tomography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69(7), 2352–2370. https://doi.org/10.1109/TUFFC.2022.3177469

    Article  Google Scholar 

  31. Salgotra, R., & Singh, U. (2019). The naked mole-rat algorithm. Neural Computing & Applications, 31(12), 8837–8857. https://doi.org/10.1007/s00521-019-04464-7

    Article  Google Scholar 

  32. Zhao, W. G., Wang, L. Y., & Zhang, Z. X. (2019). A novel atom search optimization for dispersion coefficient estimation in groundwater. Future Generation Computer Systems—The International Journal of Escience, 91, 601–610. https://doi.org/10.1016/j.future.2018.05.037

    Article  Google Scholar 

  33. Tu, J., Chen, H. L., Wang, M. J., & Gandomi, A. H. (2021). The colony predation algorithm. Journal of Bionic Engineering, 18(3), 674–710. https://doi.org/10.1007/s42235-021-0050-y

    Article  Google Scholar 

  34. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. L. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems-the International Journal of Escience, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  35. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  36. Hussien, A. G., Heidari, A. A., Ye, X. J., Liang, G. X., Chen, H. L., & Pan, Z. F. (2022). Boosting whale optimization with evolution strategy and gaussian random walks: An image segmentation method. Engineering with Computers. https://doi.org/10.1007/s00366-021-01542-0

    Article  Google Scholar 

  37. Su, H., Zhao, D., Yu, F., Heidari, A. A., Zhang, Y., Chen, H., Li, C., Pan, J., & Quan, S. (2022). Horizontal and vertical search artificial bee colony for image segmentation of covid-19 x-ray images. Computers in Biology and Medicine, 142, 105181. https://doi.org/10.1016/j.compbiomed.2021.105181

    Article  Google Scholar 

  38. Yu, H. L., Song, J. M., Chen, C. C., Heidari, A. A., Liu, J. W., Chen, H. L., Zaguia, A., & Mafarja, M. (2022). Image segmentation of leaf spot diseases on maize using multi-stage cauchy-enabled grey wolf algorithm. Engineering Applications of Artificial Intelligence, 109, 104653. https://doi.org/10.1016/j.engappai.2021.104653

    Article  Google Scholar 

  39. Zhao, F. Q., Di, S. L., Cao, J., & Tang, J. X. (2021). A novel cooperative multi-stage hyper-heuristic for combination optimization problems. Complex System Modeling and Simulation, 1(2), 91–108.

    Article  Google Scholar 

  40. Liu, P. D., & Gao, H. (2021). A novel green supplier selection method based on the interval type-2 fuzzy prioritized choquet bonferroni means. Ieee-Caa Journal of Automatica Sinica, 8(9), 1549–1566. https://doi.org/10.1109/Jas.2020.1003444

    Article  MathSciNet  Google Scholar 

  41. Deng, W., Xu, J. J., Zhao, H. M., & Song, Y. J. (2022). A novel gate resource allocation method using improved pso-based qea. Ieee Transactions on Intelligent Transportation Systems, 23(3), 1737–1745. https://doi.org/10.1109/Tits.2020.3025796

    Article  Google Scholar 

  42. Yu, H. L., Cheng, X. H., Chen, C. C., Heidari, A. A., Liu, J. W., Cai, Z. N., & Chen, H. L. (2022). Apple leaf disease recognition method with improved residual network. Multimedia Tools and Applications, 81(6), 7759–7782. https://doi.org/10.1007/s11042-022-11915-2

    Article  Google Scholar 

  43. Han, X., Han, Y. Y., Chen, Q. D., Li, J. Q., Sang, H. Y., Liu, Y. P., Pan, Q. K., & Nojima, Y. (2021). Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm. Complex System Modeling and Simulation, 1(3), 198–217.

    Article  Google Scholar 

  44. Gao, D., Wang, G. G., & Pedrycz, W. (2020). Solving fuzzy job-shop scheduling problem using de algorithm improved by a selection mechanism. IEEE Transactions on Fuzzy Systems, 28(12), 3265–3275. https://doi.org/10.1109/Tfuzz.2020.3003506

    Article  Google Scholar 

  45. Hu, J., Chen, H. L., Heidari, A. A., Wang, M. J., Zhang, X. Q., Chen, Y., & Pan, Z. F. (2021). Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowledge-Based Systems, 213, 106684. https://doi.org/10.1016/j.knosys.2020.106684

    Article  Google Scholar 

  46. Hu, J., Gui, W. Y., Heidari, A. A., Cai, Z. N., Liang, G. X., Chen, H. L., & Pan, Z. F. (2022). Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection. Knowledge-Based Systems, 237, 107761. https://doi.org/10.1016/j.knosys.2021.107761

    Article  Google Scholar 

  47. Too, J., Liang, G. X., & Chen, H. L. (2021). Memory-based harris hawk optimization with learning agents: A feature selection approach. Engineering with Computers. https://doi.org/10.1007/s00366-021-01479-4

    Article  Google Scholar 

  48. Yi, J. H., Deb, S., Dong, J. Y., Alavi, A. H., & Wang, G. G. (2018). An improved nsga-iii algorithm with adaptive mutation operator for big data optimization problems. Future Generation Computer Systems-the International Journal of Escience, 88, 571–585. https://doi.org/10.1016/j.future.2018.06.008

    Article  Google Scholar 

  49. Deng, W., Liu, H. L., Xu, J. J., Zhao, H. M., & Song, Y. J. (2020). An improved quantum-inspired differential evolution algorithm for deep belief network. Ieee Transactions on Instrumentation and Measurement, 69(10), 7319–7327. https://doi.org/10.1109/Tim.2020.2983233

    Article  Google Scholar 

  50. Zhao, H. M., Liu, H. D., Xu, J. J., & Deng, W. (2020). Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine. Ieee Transactions on Instrumentation and Measurement, 69(7), 4165–4172. https://doi.org/10.1109/Tim.2019.2948414

    Article  Google Scholar 

  51. Dong, R. Y., Chen, H. L., Heidari, A. A., Turabieh, H., Mafarja, M., & Wang, S. S. (2021). Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. Knowledge-Based Systems, 233, 107529. https://doi.org/10.1016/j.knosys.2021.107529

    Article  Google Scholar 

  52. Wu, S. H., Zhan, Z. H., & Zhang, J. (2021). Safe: Scale-adaptive fitness evaluation method for expensive optimization problems. IEEE Transactions on Evolutionary Computation, 25(3), 478–491. https://doi.org/10.1109/Tevc.2021.3051608

    Article  Google Scholar 

  53. Li, J. Y., Zhan, Z. H., Wang, C., Jin, H., & Zhang, J. (2020). Boosting data-driven evolutionary algorithm with localized data generation. IEEE Transactions on Evolutionary Computation, 24(5), 923–937. https://doi.org/10.1109/Tevc.2020.2979740

    Article  Google Scholar 

  54. Shi, B. B., Ye, H., Zheng, L., Lyu, J. C., Chen, C., Heidari, A. A., Hu, Z. Y., Chen, H. L., & Wu, P. L. (2021). Evolutionary warning system for covid-19 severity: Colony predation algorithm enhanced extreme learning machine. Computers in Biology and Medicine, 136, 104698. https://doi.org/10.1016/j.compbiomed.2021.104698

    Article  Google Scholar 

  55. Wu, S. B., Mao, P., Li, R. Z., Cai, Z. N., Heidari, A. A., Xia, J. F., Chen, H. L., Mafarja, M., Turabieh, H., & Chen, X. W. (2021). Evolving fuzzy k-nearest neighbors using an enhanced sine cosine algorithm: Case study of lupus nephritis. Computers in Biology and Medicine, 135, 104582. https://doi.org/10.1016/j.compbiomed.2021.104582

    Article  Google Scholar 

  56. Sun, Y. N., Xue, B., Zhang, M. J., & Yen, G. G. (2019). Evolving deep convolutional neural networks for image classification. IEEE Transactions on Evolutionary Computation, 24(2), 394–407.

    Article  Google Scholar 

  57. Zhang, Y. N., Liu, R. J., Heidari, A. A., Wang, X., Chen, Y., Wang, M. J., & Chen, H. L. (2021). Towards augmented kernel extreme learning models for bankruptcy prediction: Algorithmic behavior and comprehensive analysis. Neurocomputing, 430, 185–212. https://doi.org/10.1016/j.neucom.2020.10.038

    Article  Google Scholar 

  58. Cai, Z. N., Gu, J. H., Luo, J., Zhang, Q., Chen, H. L., Pan, Z. F., Li, Y. P., & Li, C. Y. (2019). Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Systems with Applications, 138, 112814. https://doi.org/10.1016/j.eswa.2019.07.031

    Article  Google Scholar 

  59. Zeng, G. Q., Lu, K. D., Dai, Y. X., Zhang, Z. J., Chen, M. R., Zheng, C. W., Wu, D., & Peng, W. W. (2014). Binary-coded extremal optimization for the design of pid controllers. Neurocomputing, 138, 180–188. https://doi.org/10.1016/j.neucom.2014.01.046

    Article  Google Scholar 

  60. Zeng, G. Q., Chen, J., Dai, Y. X., Li, L. M., Zheng, C. W., & Chen, M. R. (2015). Design of fractional order pid controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing, 160, 173–184. https://doi.org/10.1016/j.neucom.2015.02.051

    Article  Google Scholar 

  61. Zeng, G. Q., Xie, X. Q., Chen, M. R., & Weng, J. (2019). Adaptive population extremal optimization-based pid neural network for multivariable nonlinear control systems. Swarm and Evolutionary Computation, 44, 320–334. https://doi.org/10.1016/j.swevo.2018.04.008

    Article  Google Scholar 

  62. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Article  Google Scholar 

  63. Kansal, V., & Dhillon, J. S. (2020). Emended salp swarm algorithm for multiobjective electric power dispatch problem. Applied Soft Computing, 90, 106172. https://doi.org/10.1016/j.asoc.2020.106172

    Article  Google Scholar 

  64. Abbassi, A., Abbassi, R., Heidari, A. A., Oliva, D., Chen, H. L., Habib, A., Jemli, M., & Wang, M. J. (2020). Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach. Energy. https://doi.org/10.1016/j.energy.2020.117333

    Article  Google Scholar 

  65. Zhang, Y. N., Liu, R. J., Wang, X., Chen, H. L., & Li, C. Y. (2021). Boosted binary harris hawks optimizer and feature selection. Engineering with Computers, 37(4), 3741–3770. https://doi.org/10.1007/s00366-020-01028-5

    Article  Google Scholar 

  66. Yu, H. L., Yuan, K., Li, W. S., Zhao, N. N., Chen, W. B., Huang, C. C., Chen, H. L., & Wang, M. J. (2021). Improved butterfly optimizer-configured extreme learning machine for fault diagnosis. Complexity. https://doi.org/10.1155/2021/6315010

    Article  Google Scholar 

  67. Aljarah, I., Habib, M., Faris, H., Al-Madi, N., Heidari, A. A., Mafarja, M., Abd Elaziz, M., & Mirjalili, S. (2020). A dynamic locality multi-objective salp swarm algorithm for feature selection. Computers & Industrial Engineering, 147, 106628. https://doi.org/10.1016/j.cie.2020.106628

    Article  Google Scholar 

  68. Neggaz, N., Ewees, A. A., Abd Elaziz, M., & Mafarja, M. (2020). Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection. Expert Systems with Applications, 145, 113103. https://doi.org/10.1016/j.eswa.2019.113103

    Article  Google Scholar 

  69. Ren, H., Li, J., Chen, H. L., & Li, C. Y. (2021). Stability of salp swarm algorithm with random replacement and double adaptive weighting. Applied Mathematical Modelling, 95, 503–523. https://doi.org/10.1016/j.apm.2021.02.002

    Article  Google Scholar 

  70. Ren, H., Li, J., Chen, H. L., & Li, C. Y. (2021). Adaptive levy-assisted salp swarm algorithm: Analysis and optimization case studies. Mathematics and Computers in Simulation, 181, 380–409. https://doi.org/10.1016/j.matcom.2020.09.027

    Article  MathSciNet  MATH  Google Scholar 

  71. Saafan, M. M., & El-Gendy, E. M. (2021). Iwossa: An improved whale optimization salp swarm algorithm for solving optimization problems. Expert Systems with Applications, 176, 114901. https://doi.org/10.1016/j.eswa.2021.114901

    Article  Google Scholar 

  72. Zhang, H. L., Wang, Z. Y., Chen, W. B., Heidari, A. A., Wang, M. J., Zhao, X. H., Liang, G. X., Chen, H. L., & Zhang, X. (2021). Ensemble mutation-driven salp swarm algorithm with restart mechanism: Framework and fundamental analysis. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2020.113897

    Article  Google Scholar 

  73. Nautiyal, B., Prakash, R., Vimal, V., Liang, G. X., & Chen, H. L. (2021). Improved salp swarm algorithm with mutation schemes for solving global optimization and engineering problems. Engineering with Computers. https://doi.org/10.1007/s00366-020-01252-z

    Article  Google Scholar 

  74. Liang, J.J., Qu, B.Y., & Suganthan, P.N. (2013). Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization. Technical Report 201212. (Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore)

  75. Zhong, T., Cheng, M., Lu, S. P., Dong, X. T., & Li, Y. (2021). Rcen: A deep-learning-based background noise suppression method for das-vsp records. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.

    Google Scholar 

  76. Wu, X. X., Zheng, W., Chen, X., Zhao, Y., Yu, T. T., & Mu, D. J. (2021). Improving high-impact bug report prediction with combination of interactive machine learning and active learning. Information and Software Technology, 133, 106530. https://doi.org/10.1016/j.infsof.2021.106530

    Article  Google Scholar 

  77. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., & Guibas, L. (2017). Grass: Generative recursive autoencoders for shape structures. ACM Transactions on Graphics (TOG), 36(4), 1–14.

    Google Scholar 

  78. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm & Evolutionary Computation, 1(1), 3–18.

    Article  Google Scholar 

  79. García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044–2064.

    Article  Google Scholar 

  80. Lu, S. Y., Guo, J. L., Liu, S., Yang, B., Liu, M. Z., Yin, L. R., & Zheng, W. F. (2022). An improved algorithm of drift compensation for olfactory sensors. Applied Sciences-Basel, 12(19), 9529. https://doi.org/10.3390/app12199529

    Article  Google Scholar 

  81. Zhang, Z. Y., Tian, J. W., Huang, W. Z., Yin, L. R., Zheng, W. F., & Liu, S. (2021). A haze prediction method based on one-dimensional convolutional neural network. Atmosphere, 12(10), 1327. https://doi.org/10.3390/atmos12101327

    Article  Google Scholar 

  82. Shang, K. L., Chen, Z. Y., Liu, Z. X., Song, L. H., Zheng, W. F., Yang, B., Liu, S., & Yin, L. R. (2021). Haze prediction model using deep recurrent neural network. Atmosphere, 12(12), 1625. https://doi.org/10.3390/atmos12121625

    Article  Google Scholar 

  83. Zhang, H. L., Cai, Z. N., Ye, X. J., Wang, M. J., Kuang, F. J., Chen, H. L., Li, C. Y., & Li, Y. P. (2022). A multi-strategy enhanced salp swarm algorithm for global optimization. Engineering with Computers, 38(2), 1177–1203. https://doi.org/10.1007/s00366-020-01099-4

    Article  Google Scholar 

  84. Qais, M. H., Hasanien, H. M., & Alghuwainem, S. (2019). Enhanced salp swarm algorithm: Application to variable speed wind generators. Engineering Applications of Artificial Intelligence, 80, 82–96. https://doi.org/10.1016/j.engappai.2019.01.011

    Article  Google Scholar 

  85. Sayed, G. I., Khoriba, G., & Haggag, M. H. (2018). A novel chaotic salp swarm algorithm for global optimization and feature selection. Applied Intelligence, 48(10), 3462–3481. https://doi.org/10.1007/s10489-018-1158-6

    Article  Google Scholar 

  86. Heidari, A. A., Aljarah, I., Faris, H., Chen, H. L., Luo, J., & Mirjalili, S. (2020). An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Computing & Applications, 32(9), 5185–5211. https://doi.org/10.1007/s00521-019-04015-0

    Article  Google Scholar 

  87. Tubishat, M., Abushariah, M., Idris, N., & Aljarah, I. (2019). Improved whale optimization algorithm for feature selection in arabic sentiment analysis. Applied Intelligence, 49(5), 1688–1707. https://doi.org/10.1007/s10489-018-1334-8

    Article  Google Scholar 

  88. Gupta, S., & Deep, K. (2020). A novel hybrid sine cosine algorithm for global optimization and its application to train multilayer perceptrons. Applied Intelligence, 50(4), 993–1026. https://doi.org/10.1007/s10489-019-01570-w

    Article  Google Scholar 

  89. Zhu, W., Ma, C., Zhao, X. H., Wang, M. J., Heidari, A. A., Chen, H. L., & Li, C. Y. (2020). Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine. Ieee Access, 8, 61107–61123. https://doi.org/10.1109/Access.2020.2981968

    Article  Google Scholar 

  90. Gupta, S., & Deep, K. (2019). A novel random walk grey wolf optimizer. Swarm and Evolutionary Computation, 44, 101–112. https://doi.org/10.1016/j.swevo.2018.01.001

    Article  Google Scholar 

  91. Liang, H. J., Liu, Y. G., Shen, Y. J., Li, F. Z., & Man, Y. C. (2018). A hybrid bat algorithm for economic dispatch with random wind power. Ieee Transactions on Power Systems, 33(5), 5052–5061. https://doi.org/10.1109/Tpwrs.2018.2812711

    Article  Google Scholar 

  92. Lyu, S. L., Li, Z., Huang, Y. L., Wang, J. H., & Hu, J. (2019). Improved self-adaptive bat algorithm with step-control and mutation mechanisms. Journal of Computational Science, 30, 65–78. https://doi.org/10.1016/j.jocs.2018.11.002

    Article  MathSciNet  Google Scholar 

  93. Tessema, B., & Yen, G. G. (2009). An adaptive penalty formulation for constrained evolutionary optimization. Ieee Transactions on Systems Man and Cybernetics Part a-Systems and Humans, 39(3), 565–578. https://doi.org/10.1109/Tsmca.2009.2013333

    Article  Google Scholar 

  94. Takahama, T., & Sakai, S. (2006). Constrained optimization by the ε constrained differential evolution with gradient-based mutation and feasible elites. 2006 IEEE International Conference on Evolutionary Computation, Barcelona, Spain.

  95. Wang, Y., & Cai, Z. X. (2012). Combining multiobjective optimization with differential evolution to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation, 16(1), 117–134. https://doi.org/10.1109/Tevc.2010.2093582

    Article  Google Scholar 

  96. Wang, Y., Cai, Z., Zhou, Y., & Zeng, W. (2008). An adaptive tradeoff model for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation, 12(1), 80–92. https://doi.org/10.1109/Tevc.2007.902851

    Article  Google Scholar 

  97. Fan, Y., Wang, P. J., Heidari, A. A., Wang, M. J., Zhao, X. H., Chen, H. L., & Li, C. Y. (2020). Boosted hunting-based fruit fly optimization and advances in real-world problems. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2020.113502

    Article  Google Scholar 

  98. Shayanfar, H., & Gharehchopogh, F. S. (2018). Farmland fertility: A new metaheuristic algorithm for solving continuous optimization problems. Applied Soft Computing, 71, 728–746. https://doi.org/10.1016/j.asoc.2018.07.033

    Article  Google Scholar 

  99. Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. International Journal of Intelligent Systems, 36(10), 5887–5958. https://doi.org/10.1002/int.22535

    Article  Google Scholar 

  100. Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering. https://doi.org/10.1016/j.cie.2021.107408

    Article  Google Scholar 

  101. Morales-Castaneda, B., Zaldivar, D., Cuevas, E., Fausto, F., & Rodriguez, A. (2020). A better balance in metaheuristic algorithms: Does it exist? Swarm and Evolutionary Computation. https://doi.org/10.1016/j.swevo.2020.100671

    Article  Google Scholar 

  102. Liu, X. Y., Yang, B., Chen, H. C., Musial, K., Chen, H. X., Li, Y., & Zuo, W. L. (2021). A scalable redefined stochastic blockmodel. Acm Transactions on Knowledge Discovery from Data, 15(3), 1–28. https://doi.org/10.1145/3442589

    Article  Google Scholar 

  103. Yin, J. Y., Sun, W., Li, F. C., Hong, J. J., Li, X. X., Zhou, Y., Lu, Y. J., Liu, M. Z., Zhang, X., Chen, N., Jin, X. P., Xue, J., Zeng, S., Yu, L. S., & Zhu, F. (2020). Varidt 1.0: Variability of drug transporter database. Nucleic Acids Research, 48(D1), D1042–D1050.

    Article  Google Scholar 

  104. Zhu, F., Shi, Z., Qin, C., Tao, L., Liu, X., Xu, F., Zhang, L., Song, Y., Liu, X. H., Zhang, J. X., Han, B. C., Zhang, P., & Chen, Y. Z. (2012). Therapeutic target database update 2012: A resource for facilitating target-oriented drug discovery. Nucleic Acids Research, 40(D1), D1128–D1136.

    Article  Google Scholar 

  105. Li, Y. H., Li, X. X., Hong, J. J., Wang, Y. X., Fu, J. B., Yang, H., Yu, C. Y., Li, F. C., Hu, J., Xue, W. W., Jiang, Y. Y., Chen, Y. Z., & Zhu, F. (2020). Clinical trials, progression-speed differentiating features and swiftness rule of the innovative targets of first-in-class drugs. Briefings in Bioinformatics, 21(2), 649–662. https://doi.org/10.1093/bib/bby130

    Article  Google Scholar 

  106. Zhu, F., Li, X. X., Yang, S. Y., & Chen, Y. Z. (2018). Clinical success of drug targets prospectively predicted by in silico study. Trends in Pharmacological Sciences, 39(3), 229–231. https://doi.org/10.1016/j.tips.2017.12.002

    Article  Google Scholar 

  107. Guo, K. H., Hu, B., Ma, J. H., Ren, S., Tao, Z., & Zhang, J. (2021). Toward anomaly behavior detection as an edge network service using a dual-task interactive guided neural network. Ieee Internet of Things Journal, 8(16), 12623–12637. https://doi.org/10.1109/Jiot.2020.3015987

    Article  Google Scholar 

  108. Fu, J. B., Zhang, Y., Wang, Y. X., Zhang, H. N., Liu, J., Tang, J., Yang, Q. X., Sun, H. C., Qiu, W. Q., Ma, Y. H., Li, Z. R., Zheng, M. Y., & Zhu, F. (2022). Optimization of metabolomic data processing using noreva. Nature Protocols, 17(1), 129–151.

    Article  Google Scholar 

  109. Li, B., Tang, J., Yang, Q. X., Li, S., Cui, X. J., Li, Y. H., Chen, Y. Z., Xue, W. W., Li, X. F., & Zhu, F. (2017). Noreva: Normalization and evaluation of ms-based metabolomics data. Nucleic Acids Research, 45(W1), W162–W170.

    Article  Google Scholar 

  110. Hua, Y. C., Liu, Q. Q., Hao, K. R., & Jin, Y. C. (2021). A survey of evolutionary algorithms for multi-objective optimization problems with irregular pareto fronts. Ieee-Caa Journal of Automatica Sinica, 8(2), 303–318. https://doi.org/10.1109/Jas.2021.1003817

    Article  MathSciNet  Google Scholar 

  111. Gu, Z. M., & Wang, G. G. (2020). Improving nsga-iii algorithms with information feedback models for large-scale many-objective optimization. Future Generation Computer Systems-the International Journal of Escience, 107, 49–69. https://doi.org/10.1016/j.future.2020.01.048

    Article  Google Scholar 

  112. Deng, W., Zhang, X. X., Zhou, Y. Q., Liu, Y., Zhou, X. B., Chen, H. L., & Zhao, H. M. (2022). An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Information Sciences, 585, 441–453. https://doi.org/10.1016/j.ins.2021.11.052

    Article  Google Scholar 

  113. Liu, X. F., Zhan, Z. H., Gao, Y., Zhang, J., Kwong, S., & Zhang, J. (2018). Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization. IEEE Transactions on Evolutionary Computation, 23(4), 587–602.

    Article  Google Scholar 

  114. Cao, X. Y., Cao, T. X., Gao, F., & Guan, X. H. (2021). Risk-averse storage planning for improving res hosting capacity under uncertain siting choices. IEEE Transactions on Sustainable Energy, 12(4), 1984–1995. https://doi.org/10.1109/Tste.2021.3075615

    Article  Google Scholar 

  115. Qiu, S., Zhao, H. K., Jiang, N., Wu, D. H., Song, G. C., Zhao, H. Y., & Wang, Z. L. (2022). Sensor network oriented human motion capture via wearable intelligent system. International Journal of Intelligent Systems, 37(2), 1646–1673. https://doi.org/10.1002/int.22689

    Article  Google Scholar 

  116. Wu, Z. D., Li, R. C., Zhou, Z. F., Guo, J. F., Jiang, J. H., & Su, X. N. (2020). A user sensitive subject protection approach for book search service. Journal of the Association for Information Science and Technology, 71(2), 183–195. https://doi.org/10.1002/asi.24227

    Article  Google Scholar 

  117. Wu, Z. D., Shen, S. G., Lian, X. Z., Su, X. N., & Chen, E. H. (2020). A dummy-based user privacy protection approach for text information retrieval. Knowledge-Based Systems, 195, 105679. https://doi.org/10.1016/j.knosys.2020.105679

    Article  Google Scholar 

  118. Wu, Z. D., Shen, S. G., Zhou, H. P., Li, H. X., Lu, C. L., & Zou, D. D. (2021). An effective approach for the protection of user commodity viewing privacy in e-commerce website. Knowledge-Based Systems, 220, 106952. https://doi.org/10.1016/j.knosys.2021.106952

    Article  Google Scholar 

  119. Gharehchopogh, F. S. (2022). Advances in tree seed algorithm: A comprehensive survey. Archives of Computational Methods in Engineering, 29(5), 3281–3304. https://doi.org/10.1007/s11831-021-09698-0

    Article  MathSciNet  Google Scholar 

  120. Gharehchopogh, F. S., Shayanfar, H., & Gholizadeh, H. (2020). A comprehensive survey on symbiotic organisms search algorithms. Artificial Intelligence Review, 53(3), 2265–2312. https://doi.org/10.1007/s10462-019-09733-4

    Article  Google Scholar 

  121. Gharehchopogh, F. S., & Gholizadeh, H. (2019). A comprehensive survey: Whale optimization algorithm and its applications. Swarm and Evolutionary Computation, 48, 1–24. https://doi.org/10.1016/j.swevo.2019.03.004

    Article  Google Scholar 

  122. Gharehchopogh, F. S. (2022). An improved tunicate swarm algorithm with best-random mutation strategy for global optimization problems. Journal of Bionic Engineering, 19(4), 1177–1202. https://doi.org/10.1007/s42235-022-00185-1

    Article  Google Scholar 

  123. Gharehchopogh, F. S., Namazi, M., Ebrahimi, L., & Abdollahzadeh, B. (2022). Advances in sparrow search algorithm: A comprehensive survey. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-022-09804-w

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Key R&D Program of Zhejiang (2022C03114), Zhejiang Provincial Natural Science Foundation of China (LJ19F020001, LZ22F020005), National Natural Science Foundation of China (62076185, U1809209), and Guangdong Natural Science Foundation (2021A1515011994).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengjun Wang or Huiling Chen.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Appendices

Appendix 1

See Table

Table 15 Results of RCSSSA and different MAs on 30 benchmark functions

15

Appendix 2

See Table

Table 16 Results of RCSSSA and different SSA variants on 30 benchmark functions

16

Appendix 3

See Table

Table 17 Results of RCSSSA and various variants under 30 benchmark functions

17

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Wang, P., Heidari, A.A. et al. A Boosted Communicational Salp Swarm Algorithm: Performance Optimization and Comprehensive Analysis. J Bionic Eng 20, 1296–1332 (2023). https://doi.org/10.1007/s42235-022-00304-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00304-y

Keywords

Navigation