Skip to main content
Log in

LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The cellulose-water interface is a dynamic environment mostly dominated by interactions between water molecules and hydroxyl groups protruding from the top layer of the polysaccharide chains. This interface has attracted increasing interest within the context of hydrolysis with glycosyl hydrolases, and studies on the role of tightly bound and free water has emerged. At the molecular level, cellulose-bound water has been considered important to allow enzymatic hydrolysis at industrial relevant conditions, i.e. at high dry matter (HDM) contents. In the presence of lytic polysaccharide monooxygenase enzymes, the hydrolysis can with effective yields be run at well beyond the dry matter limit previously set by the 1st generation of enzyme preparations lacking LPMOs. The oxidative cleavage of the cellulose chain performed by LPMOs allow a higher level of synergism with GH in terms of accessibility of the cellulose surface. In this work, we studied how cellulose oxidation by LPMO increases the cellulose-water interaction and the impact of this on cellulose saccharification. Low-field NMR, water constraint and enzyme kinetics at high dry matter contents were used to characterize the cellulose-water interaction and its implications in enzymatic cellulose hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Yes.

References

  • Arantes V, Dias IKR, Berto GL, Pereira B, Marotti BS, Nogueira CFO (2020) The current status of the enzyme-mediated isolation and functionalization of nanocelluloses: production, properties, techno-economics, and opportunities. Cellulose 27(18):10571–10630

    Article  CAS  Google Scholar 

  • Arola S, Kou Z, Rooijakkers BJM, Velagapudi R, Sammalkorpi M, Linder MB (2022) On the mechanism for the highly sensitive response of cellulose nanofiber hydrogels to the presence of ionic solutes. Cellulose 29:6109–6121

    Article  CAS  Google Scholar 

  • Beeson WT, Vu WV, Span EA, Phillips CM, Marletta MA (2015) Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84(1):923–946

    Article  CAS  PubMed  Google Scholar 

  • Berto GL, Velasco J, Tasso CR, Zanphorlin LM, Domingues MN, Murakami MT, Polikarpov I, de Oliveira LC, Ferraz A, Segato F (2019) Functional characterization and comparative analysis of two heterologous endoglucanases from diverging subfamilies of glycosyl hydrolase family 45. Enzyme Microb Technol 120:23

    Article  CAS  PubMed  Google Scholar 

  • Berto GL, Mattos BD, Rojas OJ, Arantes V (2021) Single-step fiber pretreatment with monocomponent endoglucanase: defibrillation energy and cellulose nanofibril quality. ACS Sustain Chem Eng 9(5):2260–2270

    Article  CAS  Google Scholar 

  • Cannella D, Jørgensen H (2014) Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng 111(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Wang J, McNeel J, Jacobson P (2010) Water retention value measurements of cellulosic materials using a centrifuge technique. BioRes 5:3

    Google Scholar 

  • da Silva ASA, Espinheira RP, Teixeira RSS, de Souza MF, Ferreira-Leitão V, Bon EPS (2020) Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. Biotechnol Biofuels 13:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N (2021) The carbohydrate-active enzyme database: functions and literature. Nuc Acid Res 50(D1):571–577

    Article  Google Scholar 

  • Eijsink VGH, Petrovic D, Forsberg Z, Mekasha S, Røhr ÅK, Várnai A, Bissaro B, Vaaje-Kolstad G (2019) On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnol Biofuels 12(1):58

    Article  PubMed  PubMed Central  Google Scholar 

  • Felby C, Thygesen LG, Kristensen KB, Jørgensen H, Elder T (2008) Cellulose-water interactions during enzymatic hydrolysis as studied by time domain NMR. Cellulose 15:703–710

    Article  CAS  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  • Horn SJ, Eijsink VGH (2004) A reliable reducing end assay for chito-oligosaccharides. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2003.11.011

    Article  Google Scholar 

  • Hsieh CWC, Cannella D, Jørgensen H, Felby C, Thygesen LG (2014) Cellulase inhibition by high concentrations of monosaccharides. J Agric Food Chem 62(17):3800–3805. https://doi.org/10.1021/jf5012962

    Article  CAS  PubMed  Google Scholar 

  • Janssen M, Tillman AM, Cannella D, Jørgensen H (2014) Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw. Bioresour Technol. https://doi.org/10.1016/j.biortech.2014.09.044

    Article  PubMed  Google Scholar 

  • Jeoh T, Karuna N, Weiss ND, Thygesen LG (2017) Two-Dimensional 1H-nuclear magnetic resonance relaxometry for understanding biomass recalcitrance. ACS Sustain Chem Eng 5(10):8785–8795

    Article  CAS  Google Scholar 

  • Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007a) Liquefaction of Lignocellulose at High-Solids Concentrations. Biotechnol Bioeng. https://doi.org/10.1002/bit.21115

    Article  PubMed  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007b) Enzymatic Conversion of Lignocellulose into Fermentable Sugars: Challenges and Opportunities. Biofuels, Bioprod Biorefin 1(2):119–134

    Article  Google Scholar 

  • Kadowaki MAS, Magri S, Ortiz de Godoy M, Monclaro AV, Zarattini M, Cannella D (2021) A fast and easy strategy for lytic polysaccharide monooxygenase-cleavable His6-tag cloning, expression, and purification. Enz Microb Technol 143:109704

    Article  CAS  Google Scholar 

  • Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels. https://doi.org/10.1186/1754-6834-2-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu ZH, Chen HZ (2016) Biomass–water interaction and its correlations with enzymatic hydrolysis of steam-exploded corn stover. ACS Sustain Chem Eng 4(3):1274–1285

    Article  CAS  Google Scholar 

  • Macrelli S, Galbe M, Wallberg O (2014) Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock. Biotechnol Biofuels 7(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  • Magri S, Nazerian G, Segato T, Monclaro AV, Zarattini M, Segato F, Polikarpov I, Cannella D (2022) Polymer ultrastructure governs AA9 lytic polysaccharide monooxygenases functionalization and deconstruction efficacy on cellulose nano-crystals. Biores Technol 347:126375

    Article  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carb Res 341(1):138–152

    Article  CAS  Google Scholar 

  • Mudedla SK, Vuorte M, Veijola E, Marjamaa K, Koivula A, Linder MB, Arola S, Sammalkorpi M (2021) Effect of oxidation on cellulose and water structure: a molecular dynamics simulation study. Cellulose 28:3917–3933

    Article  CAS  Google Scholar 

  • Rahikainen J, Mattila O, Maloney T, Lovikka V, Kruus K, Suurnäkki A, Grönqvist S (2020) High consistency mechano-enzymatic pretreatment for kraft fibres: effect of treatment consistency on fibre properties. Cellulose 27(9):5311–5322

    Article  CAS  Google Scholar 

  • Roberts KM, Lavenson DM, Tozzi EJ, McCarthy MJ, Jeoh T (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 18:759–773

    Article  CAS  Google Scholar 

  • Selig MJ, Hsieh CWC, Thygesen LG, Himmel ME, Felby C, Decker SR (2012) Considering water availability and the effect of solute concentration on high solids saccharification of lignocellulosic biomass. Biotechnol Prog 28(6):1478–1490

    Article  CAS  PubMed  Google Scholar 

  • Selig MJ, Thygesen LG, Felby C (2014) Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification. Biotechnol Biofuels 7:159

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki T (2008) The hydration of glucose: the local configurations in sugar-water hydrogen bonds’. Phys Chem Chem Phys 10:96–105

    Article  CAS  PubMed  Google Scholar 

  • Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose 7:177–188

    Article  CAS  Google Scholar 

  • Teugjas H, Väljamäe P (2013) Product inhibition of cellulases studied with 14C-labeled cellulose substrates. Biotechnol Biofuels 6:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trentin LN, Skaf MS (2019) Wetting of pristine and functionalized nanocrystalline cellulose. Revista Dos Trabalhos de Iniciação Científica Da UNICAMP SP 26

  • Uchiyama T, Uchihashi T, Ishida T, Nakamura A, Vermaas JV, Crowley MF, Samejima M, Beckham GT, Igarashi K (2022) Lytic polysaccharide monooxygenase increases cellobiohydrolases activity by promoting decrystallization of cellulose surface. Sci Adv. https://doi.org/10.1126/sciadv.ade5155

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330(6001):219–222

    Article  CAS  PubMed  Google Scholar 

  • Várnai A, Siika-aho M, Viikari L (2013) Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnol Biofuels 6:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Velasco J, Oliva B, José E, Patricia L, Lima S, Larissa A, Gonçalves TA, Damasio A, Squina FM, Milagres AMF, Abdella A, Wilkins MR, Segato F (2019) Heterologous Expression and Functional Characterization of a GH10 Endoxylanase from Aspergillus Fumigatus Var. Niveus with Potential Biotechnological Application’. Biotechnol Rep 24:00382

    Google Scholar 

  • Vermaas J, Crowley MF, Beckham GT, Payne CM (2015) Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. Phys Chem B 119(20):6129–6143

    Article  CAS  Google Scholar 

  • Villares A, Moreau C, Bennati-Granier C, Garajova S, Foucat L, Falourd X, Saake B, Berrin JG, Cathala B (2017) Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci Rep 7:40262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss ND, Felby C, Thygesen LG (2018) Water retention value predicts biomass recalcitrance for pretreated lignocellulosic materials across feedstocks and pretreatment methods. Cellulose 25(6):3423–3434

    Article  CAS  Google Scholar 

  • Weiss ND, Felby C, Thygesen LG (2019) Enzymatic hydrolysis is limited by biomass-water interactions at high-solids: improved performance through substrate modifications. Biotechnol Biofuels 12:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Westereng B, Wittrup-Agger J, Horn SJ, Vaaje-Kolstad G, Aachmann FL, Stenstrøm YH, Eijsink VGH (2013) Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chrom A 1271(1):144–152

    Article  CAS  Google Scholar 

  • Westereng B, Cannella D, Wittrup-Agger J, Jørgensen H, Andersen ML, Eijsink VGH, Felby C (2015) Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep 5:18561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood TM (1988) Preparation of crystalline, amorphous and dyed cellulase substrates. Method Enzymol 160:19–25

    Article  CAS  Google Scholar 

  • Xiros C, Janssen M, Byström R, Børresen BT, Cannella D, Jørgensen H, Koppram R, Larsson C, Olsson L, Tillman AM, Wännström S (2017) Toward a sustainable biorefinery using high-gravity technology. Biofuels Biopr Bioref 11(1):15–27

    Article  CAS  Google Scholar 

  • Xu C, Zhang J, Zhang Y, Guo Y, Xu H, Xu J, Wang Z (2019) Enhancement of high-solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse at low cellulase dosage by fed-batch strategy based on optimized accessory enzymes and additives. Biores Technol 292:121993

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the funding bodies for their support.

Funding

The authors acknowledge the following grants: Innoviris-Bridge Re4Bru project for sustaining SM and DC; FNRS-MIS LUX-project F.4502.19 starting grant to D.C.; FNRS PINT-BILAT-M R.M012.18 for sustaining DC; DFF-FTP for having sustained DC; FAPESP-Sprint for having sustained IP; DFF for having sustained the visiting stay in Denmark for TJ and NK.

Author information

Authors and Affiliations

Authors

Contributions

DC, HJ conceptualized the work, analyzed data carried enzymatic hydrolysis, and wrote the manuscript; DC, CH, JK, IP, ZM, SM prepared cellulose samples, produced the enzymes, and carried out cellulose treatments; DC, NW carried out water retention value analysis; CH, LT, CF carried out low-field NMR analysis T2; TJ, NW, NK, LT carried out T1/T2 LFNMR analysis. All authors read the manuscript and participated in its revision.

Corresponding author

Correspondence to David Cannella.

Ethics declarations

Conflict of interest

The authors declare to not hold any conflict of interest that would have impacted or biased the research carried out in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 316 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannella, D., Weiss, N., Hsieh, C. et al. LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter. Cellulose 30, 6259–6272 (2023). https://doi.org/10.1007/s10570-023-05271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05271-z

Keywords

Navigation