Skip to main content
Log in

The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Water is essential to the hydrolysis and conversion of lignocellulosic materials as it is both the medium through which enzymes diffuse to and products diffuse away from the reaction sites and a reactant in the hydrolysis reaction of the glycosidic bonds within the polysaccharides. However, little is known about how water interactions with the biomass change with solids content and how this affects mass transfer resistances during high solids saccharification. Nuclear magnetic resonance spectroscopy measurements of the T 2 relaxation times of water in cellulose suspensions were used to demonstrate that increases in solids content led to increases in the physical constraint of water in the suspensions. Moreover, the addition of either glucose (a monosaccharide which end-product inhibits β-glucosidase) or mannose (a stereoisomer of glucose that does not end-product inhibit β-glucosidase) further increased water constraint at all solids contents. The presence of either monosaccharide constrained water and inhibited saccharification rates to similar extents. This observation, coupled with the absence of cellobiose produced in the reactions, demonstrated that the presence of soluble sugars can negatively impact saccharification efficiency simply by increasing water constraint in cellulose suspensions before impacting enzyme activity. Furthermore, results are presented that demonstrate strong correlations between water constraint in cellulose suspensions with diffusivities of enzyme and monosaccharides within the system. These results are discussed in the context of increased viscosity of the aqueous fraction in the suspension resulting from increased water-cellulose and water-solute interactions that ultimately increases diffusion resistances and decreases saccharification rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andric P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 28(3):308–324. doi:10.1016/j.biotechadv.2010.01.003

    Article  CAS  Google Scholar 

  • Araujo CD, Mackay AL, Whittall KP, Hailey JRT (1993) A diffusion-model for spin-spin relaxation of compartmentalized water in wood. J Magn Reson B 101(3):248–261

    Article  CAS  Google Scholar 

  • Barr BK, Wolfgang DE, Piens K, Claeyssens M, Wilson DB (1998) Active-site binding of glycosides by Thermomonospora fusca endocellulase E2. Biochemistry 37(26):9220–9229

    Article  CAS  Google Scholar 

  • Benziman M, Brown RM, Cooper K, Haigler C, White A (1980) Polymerization and crystallization are coupled processed in cellulose synthesis by Acetobacter xylinum. J Cell Biol 87(2):A118

    Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena. Wiley, New York

    Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Oxford University Press, New York

    Google Scholar 

  • Cussler EL (1997) Diffusion mass transfer in fluid systems, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Fan ZL, South C, Lyford K, Munsie J, van Walsum P, Lynd LR (2003) Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor. Bioprocess Biosyst Eng 26(2):93–101. doi:10.1007/s00449-003-0337-x

    Article  CAS  Google Scholar 

  • Felby C, Thygesen LG, Kristensen JB, Jorgensen H, Elder T (2008) Cellulose-water interactions during enzymatic hydrolysis as studied by time domain NMR. Cellulose 15(5):703–710. doi:10.1007/s10570-008-9222-8

    Article  CAS  Google Scholar 

  • Froix MF, Nelson R (1975) Interaction of water with cellulose from nuclear magnetic resonance relaxation times. Macromolecules 8(6):726–730

    Article  CAS  Google Scholar 

  • Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. In: Lisbeth O (ed) Biofuels and Advances in biochemical engineering/biotechnology, vol 108. Springer, Berlin, pp 303–327. doi:10.1007/10_2007_063

  • Gruno M, Valjamae P, Pettersson G, Johansson G (2004) Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng 86(5):503–511. doi:10.1002/bit.10838

    Article  CAS  Google Scholar 

  • Harding SG, Wessman D, Stenstrom S, Kenne L (2001) Water transport during the drying of cardboard studied by NMR imaging and diffusion techniques. Chem Eng Sci 56(18):5269–5281

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by acetobacter-xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352

    CAS  Google Scholar 

  • Hodge DB, Karim MN, Schell DJ, McMillan JD (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol 99(18):8940–8948

    Article  CAS  Google Scholar 

  • Hodge DB, Karim MN, Schell DJ, McMillan JD (2009) Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl Biochem Biotechnol 152(1):88–107

    Article  CAS  Google Scholar 

  • Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichoderma-reesei cellulase by sugars and solvents. Biotechnol Bioeng 36(3):275–287

    Article  CAS  Google Scholar 

  • Incropera FP, Dewitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  • Israelachvili JN (2006) Intermolecular & surface forces. Academic Press, New York

    Google Scholar 

  • Jorgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96(5):862–870. doi:10.1002/bit.21115

    Article  Google Scholar 

  • Jung H, Wilson DB, Walker LP (2002) Binding mechanisms for Thermobifida fusca Cel5A, Cel6B and Cel48A binding domains on bacterial microcrystalline cellulose. Biotechnol Bioeng 80(4):380–392

    Article  CAS  Google Scholar 

  • Jung H, Wilson DB, Walker LP (2003) Binding and reversibility of Thermobifida fusca Cel5A, Cel6B and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose. Biotechnol Bioeng 84:151–159

    Article  CAS  Google Scholar 

  • Kim Y, Hendrickson R, Mosier NS, Ladisch MR, Bals B, Balan V, Dale BE (2008) Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers’ grains at high-solids loadings. Bioresour Technol 99(12):5206–5215. doi:10.1016/j.biortech.2007.09.031

    Article  CAS  Google Scholar 

  • Kollmann FFP, Cote WA Jr (1968) Principles of wood science and technology: I. Solid wood, vol I. Springer-Verlag New York Inc., New York

    Google Scholar 

  • Kosto KB, Deen WM (2004) Diffusivities of macromolecules in composite hydrogels. AIChE Journal 50(11):2648–2658

    Article  CAS  Google Scholar 

  • Kristensen JB, Felby C, Jorgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2(1):11

    Article  Google Scholar 

  • Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Goncalves-Miskiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29(4):189–195. doi:10.1038/sj.jim.7000303

    Article  CAS  Google Scholar 

  • Li TQ, Henriksson U, Odberg L (1995) Determination of pore volume in cellulose fibers by the pulsed gradient spin-echo NMR technique. J Colloid Interface Sci 169(2):376–379

    Article  CAS  Google Scholar 

  • Longsworth LG (1953) Diffusion measurements, at 25-degrees, of aqueous solutions of amino acids, peptides and sugars. J Am Chem Soc 75(22):5705–5709

    Article  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341(1):138–152

    Article  CAS  Google Scholar 

  • Menon RS, Mackay AL, Hailey JRT, Bloom M, Burgess AE, Swanson JS (1987) An NMR determination of the physiological water distribution in wood during drying. J Appl Polym Sci 33(4):1141–1155

    Article  CAS  Google Scholar 

  • Ono H, Yamada H, Matsuda S, Okajima K, Kawamoto T, Iijima H (1998) H-1-NMR relaxation of water molecules in the aqueous microcrystalline cellulose suspension systems and their viscosity. Cellulose 5(4):231–247

    Article  CAS  Google Scholar 

  • Paterson HJ, Kerekes RJ (1984) Fundamentals of mixing in pulp suspensions––diffusion of reacting chlorine. TAPPI J 67(5):114–117

    CAS  Google Scholar 

  • Roberts KM (2010) Investigating the effects of water interactions in lignocellulosic materials on high solids enzymatic saccharification efficiency. M.S., University of California Davis, Davis

  • Roche CM, Dibble CJ, Knutsen JS, Stickel JJ, Liberatore MW (2009) Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104(2):290–300. doi:10.1002/bit.22381

    Article  CAS  Google Scholar 

  • Santa-Maria M, Jeoh T (2010) Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis. Biomacromolecules 11(8):2000–2007. doi:10.1021/bm100366h

    Article  CAS  Google Scholar 

  • Sluiter A, Hames BR, Ruiz R, Scarlata C, Sluiter J, Templeton DW, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, vol NREL/TP-510–42618. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Stickel JJ, Knutsen JS, Liberatore MW, Luu W, Bousfield DW, Klingenberg DJ, Scott CT, Root TW, Ehrhardt MR, Monz TO (2009) Rheology measurements of a biomass slurry: an inter-laboratory study. Rheol Acta 48(9):1005–1015. doi:10.1007/s00397-009-0382-8

    Article  CAS  Google Scholar 

  • Stone JE, Scallan AM (1965) Effects of component removal upon porous structure of the cell wall of wood. J Polym Sci 11:13–25

    Google Scholar 

  • Stone JE, Scallan AM (1968) A structural model for the cell wall of water swollen wood pulp fibres based on their accessibility to macromolecules. Cellul Chem Technol 2:343–358

    CAS  Google Scholar 

  • Tan LUL, Yu EKC, Mayers P, Saddler JN (1986) Column cellulose hydrolysis reactor––cellulase adsorption profile. Appl Microbiol Biotechnol 25(3):256–261

    CAS  Google Scholar 

  • Tengborg C, Galbe M, Zacchi G (2001) Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzym Microb Technol 28(9–10):835–844

    Article  CAS  Google Scholar 

  • Tomadakis MM, Sotirchos SV (1993) Ordinary and transition regime diffusion in random fiber structures. AIChE J 39(3):397–412

    Article  CAS  Google Scholar 

  • Topgaard D, Soderman O (2001) Diffusion of water absorbed in cellulose fibers studied with h-1-NMR. Langmuir 17(9):2694–2702

    Article  CAS  Google Scholar 

  • Tozzi EJ, Lavenson DM, McCarthy MJ, Powell RL (2011) Magnetic resonance imaging to measure spatially resolved concentration profiles of solutes diffusing in stagnant beds of cellulosic fibers. AIChE J. doi:10.1002/aic.12578

  • Varga E, Klinke HB, Reczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88(5):567–574. doi:10.1002/bit.20222

    Article  CAS  Google Scholar 

  • Viamajala S, McMillan JD, Schell DJ, Elander RT (2009) Rheology of corn stover slurries at high solids concentrations––effects of saccharification and particle size. Bioresour Technol 100(2):925–934. doi:10.1016/j.biortech.2008.06.070

    Article  CAS  Google Scholar 

  • Vyas D, Pradhan SD, Pavaskar NR, Lachke A (2004) Differential thermal and thermogravimetric analyses of bound water content in cellulosic substrates and its significance during cellulose hydrolysis by alkaline active fungal cellulases. Appl Biochem Biotechnol 118(1–3):177–188

    Google Scholar 

  • Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129

    Article  CAS  Google Scholar 

  • Xiao ZZ, Zhang X, Gregg DJ, Saddler JN (2004) Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 113–116:1115–1126

    Article  Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical-properties of sheets prepared from bacterial cellulose. J Mater Sci 24(9):3141–3145

    Article  CAS  Google Scholar 

  • Zhao YL, Wang Y, Zhu JY, Ragauskas A, Deng YL (2008) Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng 99(6):1320–1328. doi:10.1002/bit.21712

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jeff Walton and Jeff deRopp of the University of California Davis NMR facility for their assistance in developing the protocols and pulse sequences necessary for this research as well as for helping with actual data collection and analysis. We would also like to thank Novozymes for kindly providing the enzymes used in this study and John Labavitch of the University of California Davis Plant Sciences Department for the use of his lab space and other resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Jeoh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Enzymatic saccharification of cellulose suspensions (filled circles) at varying solids content, comparing with reactions spiked with 1% mannose (open circles) for A) 24 hours, B) 72 hours, and C) 120 hours. Reactions were conducted at 50°C and pH 5 with Celluclast and Novozyme 188 loadings of 10 mg/g cellulose. Glucose yield indicates the percentage of cellulose converted to glucose. Error bars indicate standard error of triplicates (TIFF 210 kb)

Online Resource 2

Initial rate of β-glucosidase hydrolysis of cellobiose at various initial concentrations in the presence of mannose. Experiments were conducted at 50°C and pH 5 for 10 minutes (TIFF 77 kb)

Online Resource 3

Concentration of Gd-BSA remaining in solution with changes in bacterial cellulose quantity at room temperature. Equilibration time between cellulose addition and NMR measurement was about 30 minutes. Error bars correspond to the standard error within each sample (TIFF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, K.M., Lavenson, D.M., Tozzi, E.J. et al. The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 18, 759–773 (2011). https://doi.org/10.1007/s10570-011-9509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9509-z

Keywords

Navigation