Skip to main content
Log in

Reductive-co-precipitated cellulose immobilized zerovalent iron nanoparticles in ionic liquid/water for Cr(VI) adsorption

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Microcrystalline cellulose immobilized zerovalent iron nanoparticles (CI-1-3) with different loading of 6, 12 and 24% w/w Fe0 were synthesized by NaBH4 reduction under simultaneous co-precipitation of cellulose from ionic liquid ([BMIM]Cl)-water binary mixture. SEM, TEM, FTIR, VSM, XRD and XPS analysis were carried out to characterize the material. The electron microscopy studies revealed the immobilization of iron nanoparticle in the bulk and surface of microcrystalline cellulose with a size range of 20–100 nm. CI-1-3 showed strong interaction between cellulose hydroxyl moiety and nZVI, immobilized on the polymer and saturation magnetization of 3 emu/g for CI-2. The materials were studied for Cr(VI) adsorption which revealed the qmax value of 28.57, 58.82 and 38.48 mg Cr(VI)/g of CI-1-3, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination 270:105–110

    Article  CAS  Google Scholar 

  • Anirudhan TS, Jalajamony S, Suchithra PS (2009) Improved performance of a cellulose-based anion exchanger with tertiary amine functionality for the adsorption of chromium(VI) from aqueous solutions. Colloids Surf A 335:107–113

    Article  CAS  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association, Washington, DC, pp 3-67–3-68

  • Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermudez JJE (2009) Entrapment of iron nanoparticles in calcium alginate beads for ground water remediation application. J Hazard Mater 166:1339–1343

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S (2008) Nanoporous cellulose as metal nanoparticles support. Biomacromol 10:87–94

    Article  CAS  Google Scholar 

  • Choi K, Lee S, Park JO, Park JA, Cho SH, Lee SY, Lee JH, Choi JW (2018) Chromium removal from aqueous solution by a PEI-silica nanocomposite. Sci Rep 8:1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  CAS  PubMed  Google Scholar 

  • Crowhurst L, Mawdsley PR, Perez JM (2003) Solvent-solute interaction in ionic liquid. Phys Chem Chem Phys 5:2790–2794

    Article  CAS  Google Scholar 

  • Dafader NC, Rahman N, Majumdar SK, Khan MM, Rahman MM (2018) Preparation and characterization of iminodiacetate group containing nonwoven polyethylene fabrics and its application in chromium adsorption. J Polym Environ 26:740–748

    Article  CAS  Google Scholar 

  • Dalla Vecchia E, Coisson M, Appino C, Vinai F, Sethi R (2009) Magnetic characterization and interaction modeling of zerovalent iron nanoparticles for the remediation of contaminated aquifers. J Nanosci Nanotechnol 9:3210–3218

    Article  CAS  PubMed  Google Scholar 

  • Datta KKR, Petala E, Datta KJ, Perman JA, Tucek J, Bartak P, Zboril R (2014) NZVI modified magnetic filter paper with high redox and catalytic activities for advanced water treatment technologies. Chem Commun 50:15673–15676

    Article  CAS  Google Scholar 

  • de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606

    Article  CAS  Google Scholar 

  • Devan RS, Ho WD, Chen CH, Shiu HW, Ho CH, Cheng CL, Wu SY, Liou Y, Ma YR (2009) High room-temperature photoluminescence of one-dimensional Ta2O5 nanorod arrays. Nanotechnology 20:445708

    Article  CAS  PubMed  Google Scholar 

  • Devan RS, Lin JH, Ho WD, Wu SY, Liou Y, Ma YR (2010) Investigation of high-temperature phase transformation in one-dimensional Ta2O5 nanorods. J Appl Crystallogr 43:1062–1067

    Article  CAS  Google Scholar 

  • Devan RS, Lin CL, Gao SY, Cheng CL, Liou Y, Ma YR (2011) Enhancement of green-light photoluminescence of Ta2O5 nanoblock stacks. Phys Chem Chem Phys 13:13441–13446

    Article  CAS  PubMed  Google Scholar 

  • Devan RS, Ma YR, More MA, Khare RT, Antad VV, Patil RA, Thakare VP, Dhayal RS, Schmidt-Mende L (2016) Promising field electron emission performance of vertically aligned one dimensional (1D) brookite (β) TiO2 nanorods. RSC Adv 6:98722–98729

    Article  CAS  Google Scholar 

  • Devan RS, Thakare VP, Antad VV, Chikate PR, Khare RT, More MA, Dhayal RS, Patil SI, Ma YR, Schmidt-Mende L (2017) Nano-heteroarchitectures of two-dimensional MoS2@ one-dimensional brookite TiO2 nanorods: prominent electron emitters for displays. ACS Omega 2:2925–2934

    Article  CAS  Google Scholar 

  • Duan J, He X, Zhang L (2015) Magnetic cellulose–TiO2 nanocomposite microspheres for highly selective enrichment of phosphopeptides. Chem Commun 51:338–341

    Article  Google Scholar 

  • Eliodorio KP, Andolfatto VS, Martins MR, de Sá BP, Umeki ER, de Araújo Morandim-GiannettiA (2017) Treatment of chromium effluent by adsorption on chitosan activated with ionic liquids. Cellulose 24:2559–2570

    Article  CAS  Google Scholar 

  • Fitz-Patrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Fu F, Ma J, Xie L, Tang B, Han W, Lin S (2013) Chromium removal using resin supported nanoscale zero-valent iron. J Environ Manag 128:822–827

    Article  CAS  Google Scholar 

  • Fu R, Yang Y, Xu Z, Zhang X, Guo X, Bi D (2015) The removal of chromium(VI) and lead(II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere 138:726–734

    Article  CAS  PubMed  Google Scholar 

  • Galan B, Castañeda D, Ortiz I (2005) Removal and recovery of Cr(VI) from polluted ground waters: a comparative study of ion-exchange technologies. Water Res 39:4317–4324

    Article  CAS  PubMed  Google Scholar 

  • Gelesky MA, Scheeren CW, Foppa L, Pavan FA, Dias SL, Dupont J (2009) Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions. Biomacromol 10:1888–1893

    Article  CAS  Google Scholar 

  • Geng B, Jin Z, Li T, Qi X (2009) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75:825–830

    Article  CAS  PubMed  Google Scholar 

  • Gheju M (2011) Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic system. Water Air Soil Pollut 222:103–148

    Article  CAS  Google Scholar 

  • Golder AK, Samanta AN, Ray S (2007) Removal of trivalent chromium by electrocoagulation. Sep Purif Technol 53:33–41

    Article  CAS  Google Scholar 

  • Guo ZR, Zhang G, Fang J, Dou X (2006) Enhanced chromium recovery from tanning wastewater. J Clean Prod 14:75–79

    Article  Google Scholar 

  • Gurgel LVA, de Melo JCP, de Lena JC, Gil LF (2009) Adsorption of chromium(VI) ion from aqueous solution by succinylated-mercerized cellulose functionalized with quaternary ammonium groups. Bioresour Technol 100:3214–3220

    Article  CAS  PubMed  Google Scholar 

  • Hafez A, El-Mariharawy S (2004) Design and performance of the two-stage/two-pass RO membrane system for chromium removal from tannery wastewater. Desalination 165:141–151

    Article  CAS  Google Scholar 

  • Halada GP, Clayton CR (1991) Photoreduction of hexavalent chromium during X-ray photoelectron spectroscopy analysis of electrochemical and thermal films. J Electrochem Soc 138:2921–2927

    Article  CAS  Google Scholar 

  • Harvey AE Jr, Smart JA, Amis ES (1955) Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline. Anal Chem 27:26–29

    Article  CAS  Google Scholar 

  • He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34

    Article  CAS  Google Scholar 

  • Hines JH, Wanigasekara E, Rudkevich DM, Rogers RD (2008) Calix[4]arenes immobilized in a cellulose-based platform for entrapment and detection of NO x gases. J Mater Chem 18:4050–4055

    Article  CAS  Google Scholar 

  • Horzum N, Demir MM, Nairat M, Shahwan T (2013) Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic. RSC Adv 3:7828–7837

    Article  CAS  Google Scholar 

  • Hu XJ, Wang JS, Liua YG, Li X, Zenga GM, Bao ZL, Zeng XX, Chen AW, Long F (2011) Adsorption of chromium(VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics. J Hazard Mater 185:306–314

    Article  CAS  PubMed  Google Scholar 

  • Jabeen H, Chandra V, Jung S, Lee JW, Kim KS, Kim SB (2011) Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 3:3583–3585

    Article  CAS  PubMed  Google Scholar 

  • Jones F, Farrow JB, Van Bronswijk W (1998) An infrared study of a polyacrylate flocculant adsorbed on hematite. Langmuir 14:6512–6517

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S (2001) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369:79–85

    Article  CAS  Google Scholar 

  • Kim UJ, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56:7–10

    Article  CAS  Google Scholar 

  • Kim JH, Kim JH, Bokare V, Kim EJ, Chang YY, Chang YS (2012) Enhanced removal of chromate from aqueous solution by sequential adsorption-reduction on mesoporous iron–iron oxide nanocomposite. J Nanopart Res 14:1010

    Article  CAS  Google Scholar 

  • Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5:562–569

    Article  CAS  Google Scholar 

  • Kotelnikova N, Vainio U, Pirkkalainen K, Serimaa R (2007) Novel approaches to metallization of cellulose by reduction of cellulose-incorporated copper and nickel Ions. Macromol Symp 254:74–79

    Article  CAS  Google Scholar 

  • Koujalagi PS, Divekar SV, Kulkarni RM, Nagarale RK (2013) Kinetics, thermodynamic, and adsorption studies on removal of chromium(VI) using Tulsion A-27(MP) resin. Desalin Water Treat 51:3273–3283

    Article  CAS  Google Scholar 

  • Kumar AS, Jiang SJ, Tseng WL (2015) Effective adsorption of chromium(VI)/Cr(III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. J Mater Chem A 3:7044–7057

    Article  CAS  Google Scholar 

  • Kwak HW, Kim MK, Lee JY, Yun H, Kim MH, Park YH, Lee KH (2015) Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium(VI) removal. Algal Res 7:92–99

    Article  Google Scholar 

  • Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946

    Article  CAS  Google Scholar 

  • Li XQ, Cao J, Zhang WX (2008) Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Ind Eng Chem Res 47:2131–2139

    Article  CAS  Google Scholar 

  • Li L, Li Y, Cao L, Yang C (2015) Enhanced chromium(VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydr Polym 125:206–213

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Xu B, Zhuang L, Xu X, Wang G, Zhang X, Chen J, Tang Y (2018) Preparation, characterization, adsorption kinetics and thermodynamics of chitosan adsorbent grafted with a hyperbranched polymer designed for Cr(VI) removal. Cellulose 25:3471–3486

    Article  CAS  Google Scholar 

  • Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, Wang X (2012) Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352

    Article  CAS  Google Scholar 

  • Liu X, Zhou W, Qian X, Shen J, An X (2013) Polyaniline/cellulose fiber composite prepared using persulfate as oxidant for Cr(VI)-detoxification. Carbohydr Polym 92:659–661

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336

    Article  CAS  Google Scholar 

  • Manning BA, Kiser JR, Kwon H, Kanel SR (2007) Spectroscopic investigation of Cr(III)-and Cr(VI)-treated nanoscale zerovalent iron. Environ Sci Technol 41:586–592

    Article  CAS  PubMed  Google Scholar 

  • Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci Technol 35:191–201

    Article  CAS  Google Scholar 

  • Miao Q, Yan J (2013) Comparison of three ornamental plants for phytoextraction potential of chromium removal from tannery sludge. J Mater Cycles Waste Manag 15:98–105

    Article  CAS  Google Scholar 

  • Moulder J (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Chastain J, King RC (eds) Eden Prairie, Physical Electronics Division, Perkin-Elmer Corporation, Minnesota

  • Mukherjee R, Kumar R, Sinha A, Lama Y, Saha AK (2015) A review on synthesis, characterization and applications of nano-zero valent iron (nZVI) for environmental remediation. Crit Rev Environ Sci Technol 46:443–466

    Article  CAS  Google Scholar 

  • Narayani M, Vidya SK (2012) Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol 43:955–1009

    Article  CAS  Google Scholar 

  • National Toxicology Program, Department of Health and Human Services (NIEHS) (2011) Report on Carcinogens, 12th ed. http://ntp.niehs.nih.gov/ntp/roc/twelfth/roc12.pdf

  • Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77

    Article  CAS  Google Scholar 

  • Parlayici S, Pehlivan E (2015) Natural biosorbents (garlic stem and horse chesnut shell) for removal of chromium(VI) from aqueous solutions. Environ Monit Assess 187:763

    Article  CAS  PubMed  Google Scholar 

  • Patterson JW, Passino R (1987) Metals separation and recovery. In: Patterson JW (ed) Metal speciation separation and recovery. Lewis, USA, pp 63–96

    Google Scholar 

  • Perez-González A, Urtiaga AM, Ibáñez R, Ortiz I (2012) State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res 46:267–283

    Article  CAS  PubMed  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported nanoscale zerovalent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Powell RM, Plus RW, Hightower SK, Sabatini DA (1995) Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ Sci Technol 29:1913–1922

    Article  CAS  PubMed  Google Scholar 

  • Qiu B, Xu C, Sun D, Wang Q, Gu H, Zhang X, Weeks BL, Hopper J, Ho T, Guo Z, Wei S (2015) Polyaniline coating with various substrates for hexavalent chromium removal. Appl Surf Sci 334:7–14

    Article  CAS  Google Scholar 

  • Raychoudhury T, Tufenkji N, Ghoshal S (2012) Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res 46:1735–1744

    Article  CAS  PubMed  Google Scholar 

  • Sajana TK, Ghangrekar MM, Mitra A (2014) Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell. Bioresour Technol 155:84–90

    Article  CAS  PubMed  Google Scholar 

  • Saliba R, Gauthier H, Gauthier R, Petit-Ramel M (2000) Adsorption of copper(II) and chromium(III) ions onto amidoximated cellulose. J Appl Polym Sci 75:1624–1631

    Article  CAS  Google Scholar 

  • Seid KA, Badot JC, Dubrunfaut O, Levasseur S, Guyomard D, Lestriez B (2012) Influence of the carboxymethyl cellulose binder on the multiscale electronic transport in carbon–LiFePO4 nanocomposites. J Mater Chem 22:24057–24066

    Article  CAS  Google Scholar 

  • Sharma YC, Srivastava V, Weng CH, Upadhyay SN (2009) Removal of Cr(VI) from wastewater by adsorption on iron nanoparticles. Can J Chem Eng 87:921–929

    Article  CAS  Google Scholar 

  • Sharma P, Bihari V, Agarwal SK, Verma V, Kesavachandran CN, Pangtey BS, Mathur N, Singh PK, Shrivastava M, Goel SK (2012) Groundwater contaminated with hexavalent chromium [Cr(VI)]: a health survey and clinical examination of community inhabitants (Kanpur, India). PLoS ONE 7:e47877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma AK, Kumar R, Mittal S, Hussain S, Arora M, Sharma RC, Babu JN (2015) In-situ reductive regeneration of zerovalent iron nanoparticles immobilized on cellulose for atom efficient Cr(VI) adsorption. RSC Adv 5:89441–89446

    Article  CAS  Google Scholar 

  • Shi LN, Zhang X, Chen ZL (2011) Removal of chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Misra V, Singh RP (2011) Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J Nanopart Res 13:4063–4073

    Article  CAS  Google Scholar 

  • Singha AS, Guleria A (2014) Use of low cost cellulosic biopolymer based adsorbent for the removal of toxic metal ions from the aqueous solution. Sep Sci Technol 49:2557–2567

    Article  CAS  Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nanozerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbery JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  PubMed  Google Scholar 

  • Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: Are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503

    Article  CAS  PubMed  Google Scholar 

  • USEPA (2011) http://www.rpi.edu/dept/chem-eng/Biotech-Environ/Adsorb/bet.htm. Accessed 06/01/2018

  • USEPA (2013) http://www.rpi.edu/dept/chem-eng/Biotech-Environ/Adsorb/bet.htm. Accessed 06/01/2018

  • Uzum C, Shahwan T, Eroğlu AE, Hallam KR, Scott TB, Lieberwirth I (2009) Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci 43:172–181

    Article  CAS  Google Scholar 

  • Vaid U, Mittal S, Babu JN (2013) Removal of hexavalent chromium from aqueous solution using biomass derived fly ash from waste-to-energy power plant. Desalin Water Treat 52:7845–7855

    Article  CAS  Google Scholar 

  • Wen Z, Zhang Y, Dai C (2014) Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf A Physicochem Eng Asp 457:433–440

    Article  CAS  Google Scholar 

  • Xiao S, Shen M, Guo R, Wang S, Shi X (2009) Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: synthesis, characterization, and potential environmental applications. J Phys Chem C 113:18062–18068

    Article  CAS  Google Scholar 

  • Xie P, Hao X, Mohamad OA, Liang J, Wei G (2013) Comparative study of chromium biosorption by mesorhizobiumamorphae strain CCNWGS0123 in single and binary mixtures. Appl Biochem Biotechnol 169:570–587

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Sharma AK, Babu JN (2016) Sorptive removal of arsenite [As(III)] and arsenate [As(V)] by fuller’s earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): effect of Fe0 loading on adsorption activity. J Environ Chem Eng 4:681–694

    Article  CAS  Google Scholar 

  • Yu X, Tong S, Ge M, Zuo J, Cao C, Song W (2013) One-step synthesis of magnetic composites of cellulose@ iron oxide nanoparticles for arsenic removal. J Mater Chem A 1:959–965

    Article  CAS  Google Scholar 

  • Zhang Y, Xu L, Zhao L, Peng J, Li C, Li J, Zhai M (2012) Radiation synthesis and Cr(VI) removal of cellulose microsphere adsorbent. Carbohydr Polym 88:931–938

    Article  CAS  Google Scholar 

  • Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Archana Kumari Sharma is thankful to CUPB for providing university fellowship for carrying out the proposed research. We are all thankful to CSMCRI, CIL-CUPB for the analytical services provided. J. N. Babu is thankful to CUPB for research seed money grant and to DST, New Delhi, India for providing funds through DST Fast Track Young Scientist as Project Ref. No. 240/2010 for research support. The authors’ acknowledge Electron Microscope Division, AIIMS, New Delhi for TEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nagendra Babu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.K., Devan, R.S., Arora, M. et al. Reductive-co-precipitated cellulose immobilized zerovalent iron nanoparticles in ionic liquid/water for Cr(VI) adsorption. Cellulose 25, 5259–5275 (2018). https://doi.org/10.1007/s10570-018-1932-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1932-y

Keywords

Navigation