Skip to main content
Log in

Natural biosorbents (garlic stem and horse chesnut shell) for removal of chromium(VI) from aqueous solutions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The biosorption of Cr(VI) by the garlic stem (GS)-Allium sativum L. and horse chesnut shell (HCS)-Aesculus hippocastanum plant residues in a batch type reactor was studied in detail for the purpose of wastewater treatment. The influence of initial Cr(VI) concentration, time, and pH was investigated to optimize Cr(VI) removal from aqueous solutions and equilibrium isotherms and kinetic data. This influence was evaluated. The adsorption capacity of the GS and the HCS for Cr(VI) was determined with the Langmuir and Freundlich isotherm models, and the data was fitted to the Langmuir. The adsorption capacity of the GS and the HCS was found to be 103.09 and 142.85 mg/g of adsorbent from a solution containing 3000 ppm of Cr(VI), respectively. The GS’s capacity was considerably lower than that of the HCS in its natural form. Gibbs free energy was spontaneous for all interactions, and the adsorption process exhibited exothermic enthalpy values. The HCS was shown to be a promising biosorbent for Cr(VI) removal from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aoyama, M., Kishino, M., & Jo, T. S. (2005). Biosorption of Cr(VI) on Japanese Cedar bark. Separation Science and Technology, 39, 1149–1162.

    Article  Google Scholar 

  • Chand, R., Narimura, K., & Kawakita, H. (2009). Grape waste as a biosorbent for removing Cr(VI) from aqueous solutions. Journal of Hazardous Materials, 163, 245–250.

    Article  CAS  Google Scholar 

  • Edebali, S., & Pehlivan, E. (2014). Evaluation of Cr(III) by ion-exchange resins from aqueous solution: equilibrium, thermodynamics and kinetics. Desalination and Water Treatment, 52, 7143–7153.

    Article  CAS  Google Scholar 

  • EPA Environmental Protection Agency (1990). Environmental pollution control alters, EPA/625/5 –90/025, EPA/625/4 –89/023, Cincinnati.

  • Gandhi, M. R., Kousalya, G. N., & Meenaksih, S. (2011). Removal of copper(II) using chitin/chitosan nano-hydroxyapatite composite. International Journal of Biological Macromolecules, 48, 119–124.

    Article  CAS  Google Scholar 

  • Gebrehawaria, G., Hussen, A., & Rao, V. M. (2014). Removal of hexavalent chromium from aqueous solutions using barks of Acacia albida and leaves of Euclea schimperi. International Journal of Environmental Science and Technology, 12, 1569–1580.

    Article  Google Scholar 

  • Gode, F., & Pehlivan, E. (2005). Removal of Cr(VI) from aqueous solution by two lewatit anion exchange resins. Journal of Hazardous Materials B, 119, 175–182.

    Article  CAS  Google Scholar 

  • Guell, R., Antico, E., Salvado, V., & Fonta’s, C. (2008). Efficient hollow fiber supported liquid membrane system for the removal and pre concentration of Cr(VI) at trace levels. Separation and Purification Technology, 62, 389–393.

    Article  CAS  Google Scholar 

  • Huang, K., Xiu, Y., & Zhu, H. (2014). Removal of hexavalent chromium from aqueous solution by crosslinked mangosteen peel biosorbent. International Journal of Environmental Science and Technology, 12, 2485–2492.

    Article  Google Scholar 

  • Jung, C., Heo, J., Han, J., Her, J. N., Lee, S. J., Oh, S. J., Ryu, J., & Yoon, Y. (2013). Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Separation and Purification Technology, 106, 63–71.

    Article  CAS  Google Scholar 

  • Liang, S., Guo, X., Lautner, S., & Saake, B. (2014). Removal of hexavalent chromium by different modified spruce bark adsorbents. Journal of Wood Chemistry and Technology, 34, 273–290.

    Article  CAS  Google Scholar 

  • Miretzky, P., & Fernandez, C. A. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lingocellulosic materials. Journal of Hazardous Materials, 180, 1–19.

    Article  CAS  Google Scholar 

  • Mishra, A., Dubey, A., & Shinghal, S. (2014). Biosorption of chromium(VI) from aqueous solutions using waste plant biomass. International Journal of Environmental Science and Technology, 12, 1415–1426.

    Article  Google Scholar 

  • Ogawa, S., Kimura, H., Niimi, A., Katsube, T., Jisaka, M., & Yokota, K. (2008). Fractionation and structural characterization of polyphenolic antioxidants from seed shells of Japanese horse chestnut (Aesculus turbinata Blume). Journal of Agricultural and Food Chemistry, 56(24), 12046–12051.

    Article  CAS  Google Scholar 

  • Parka, Y.-K., Yoo, M. L., Lee, H. W., Park, S. H., Jung, S.-C., Park, S.-S., & Kim, S.-C. (2012). Effects of operation conditions on pyrolysis characteristics of agricultural residues. Renewable Energy, 42, 125–130.

    Article  Google Scholar 

  • Pavan, F. A., Lima, I. S., Lima, E. C., Airoldi, C., & Gushikem, Y. J. (2006). Use of ponkan mandarin peels as biosorbent for toxic metals uptake from aqueous solutions. Journal of Hazardous Materials, 137(1), 527–533.

    Article  CAS  Google Scholar 

  • Pehlivan, E., Altun, T., & Parlayıcı, S. (2009). Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions. Journal of Hazardous Materials, 164, 982–986.

    Article  CAS  Google Scholar 

  • Pehlivan, E., Tran, H. T., Ouédraogo, W. I. K., Schmidt, C., Zachmann, D., & Bahadir, M. (2013a). Removal of As(V) from aqueous solutions by iron coated rice husk. Fuel Processing Technology, 106, 511–517.

    Article  CAS  Google Scholar 

  • Pehlivan, E., Tran, H. T., Ouédraogo, W. I. K., Schmidt, C., Zachmann, D., & Bahadir, M. (2013b). Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chemistry, 138, 133–138.

    Article  CAS  Google Scholar 

  • Saordohan, T., Kir, E., Gulec, A., & Cengeloglu, Y. (2010). Removal of Cr (III) and Cr(VI) through the plasma modified and unmodified ion-exchange membranes. Separation and Purification Technology, 74, 14–20.

    Article  Google Scholar 

  • Selen, V., Özer, D., & Özer, A. (2014). A study on the removal of Cr(VI) ions by sesame (Sesamum indicum) stems dehydrated with sulfuric acid. Arabian Journal for Science and Engineering, 39, 5895–5904.

    Article  CAS  Google Scholar 

  • Singha, B., Naiya, T. K., Bhattacharya, A. K., & Das, S. K. (2011). Cr(VI) ions removal from aqueous solutions using natural adsorbents – FTIR studies. Journal of Environmental Protection, 02, 729–735.

    Article  CAS  Google Scholar 

  • Vazquez, G., Calvo, M., Sonia, F. M., Freire, S., Gonzalez-Alvarez, J., & Antorrena, G. (2009). Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal. Journal of Hazardous Materials, 172, 1402–1414.

    Article  CAS  Google Scholar 

  • Veeram, B., Talbot, J., & Andedgard, S. (2003). Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environmental Science & Technology, 37, 4449–4456.

    Article  Google Scholar 

  • Virginia, L. (2006). The analysis of onion and garlic. Journal of Chromatography, A, 1112, 3–22.

    Article  Google Scholar 

  • Wang, X. S., Li, Z. Z., & Tao, S. R. (2009). Removal of chromium(VI) from aqueous solution using walnut hull. Journal of Environmental Management, 90, 721–729.

    Article  CAS  Google Scholar 

  • Ya, Z. Y., Qi, J. H., & Wang, L. H. (2010). Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. Journal of Hazardous Materials, 174, 137–143.

    Article  Google Scholar 

  • Yanhui, L., Bing, X., Quansheng, Z., Fuqiang, L., Pan, Z., Qiuju, D., Dechang, W., Lil, D., Zonghua, W., & Yanzhi, X. (2011). Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin. Journal of Environmental Sciences, 23, 404–411.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to Turkish Academia of Sciences (TÜBA) and Selçuk University (BAP) (number 14101008) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erol Pehlivan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parlayıcı, Ş., Pehlivan, E. Natural biosorbents (garlic stem and horse chesnut shell) for removal of chromium(VI) from aqueous solutions. Environ Monit Assess 187, 763 (2015). https://doi.org/10.1007/s10661-015-4984-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4984-6

Keywords

Navigation