Skip to main content

Advertisement

Log in

Comparative Study of Chromium Biosorption by Mesorhizobium amorphae Strain CCNWGS0123 in Single and Binary Mixtures

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The appearance of chromium in the aqueous effluent is a major concern for the modern industry. In this work, Mesorhizobium amorphae strain CCNWGS0123 was investigated as a biosorbent to remove chromium from aqueous solutions. The optimum pH for Cr(III) and Cr(VI) biosorption were 4 and 2, respectively. This isolate showed an experimental maximum Cr(III) adsorption capacity of 53.52 mg L−1, while the result was 47.67 mg L−1 for Cr(VI), with an initial 100 mg L−1 Cr ions and 1.0 g L−1 biomass. In terms of time equilibrium, Cr(III) ion was more readily adsorbed than Cr(VI) by this isolate. The biosorption data of both ions fit the Langmuir isotherm better than that of Freundlich model. Meanwhile, this organism exhibited a good capability to release Cr ions, with desorption efficiency of 70 % for Cr(III) and 76 % for Cr(VI). Fourier transform infrared spectroscopy analysis showed that –OH, –COO, –NH, amide I, and C=O were involved in Cr(III) and Cr(VI) binding. The biosorbent was further characterized by scanning electron microscopy and energy-dispersive X-ray spectrometry, which indicated an accumulation of chromium on the cellular level. In the binary mixtures, the removal ratio of total Cr and Cr(III) increased from pH 2 to 4. The highest removal ratio of the total Cr was observed in the 25/25 mg L−1 mixture at pH 4. In addition, the removal efficiency of Cr(VI) was closely influenced by Cr(III) in the mixture, decreasing to 23.57 mg g−1 in the 100/100 mg L−1 mixture system, due to the competition of Cr(III). The potential usage of the chromium-resistant rhizobium for the remediation of chromium-contaminated effluents has been demonstrated based on the above results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Park, D. H., Yun, Y. S., et al. (2006). Biosorption process for treatment of electroplating wastewater containing Cr(VI): laboratory-scale feasibility test. Industrial and Engineering Chemistry Research, 45(14), 5059–5065.

    Article  CAS  Google Scholar 

  2. Gooloka, M. C. (1995). Toxic and mutagenic effects of chromium (VI): a review. Polyhedron, 15, 3667–3689.

    Google Scholar 

  3. Kaufaman, D. B. (1970). Acute potassium dichromate poisoning in man. American journal of disease of children, 119, 374–381.

    Google Scholar 

  4. Kimbrough, D. E., Cohen, Y., et al. (1999). A critical assessment of chromium in the environment. Environmental Science & Technology, 29, 1–46.

    Article  CAS  Google Scholar 

  5. Baral, A., & Engelken, R. D. (2002). Chromium-based regulations and greening in metal finishing industries in the USA. Environmental Science Policy, 5(2), 121–133.

    Article  CAS  Google Scholar 

  6. Wang, J. L., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226.

    Article  Google Scholar 

  7. Lesmana, S. O., Febriana, N., et al. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal, 44(1), 19–41.

    Article  CAS  Google Scholar 

  8. Davis, T. A., & Volesky, B. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37, 4311–4330.

    Article  CAS  Google Scholar 

  9. Srinath, T., Verma, T., et al. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48, 427–435.

    Article  CAS  Google Scholar 

  10. Dowine, A. (1997). Fixing a symbiotic circle. Nature, 387, 352–353.

    Article  Google Scholar 

  11. Carrasco, J. A., Armario, P., et al. (2005). Isolation and characteristic of symbiotically effective rhizobium resistance to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biology and Biochemistry, 37, 1131–1140.

    Article  CAS  Google Scholar 

  12. Chaudri, A. M., McGrath, S. P., et al. (2006). Screening of isolates and strains of Rhizobium leguminosarum biovar trifolii for heavy metal resistance using buffered media. Environmental Toxicology and Chemistry, 12(9), 1643–1651.

    Google Scholar 

  13. Wu, C. H., Wood, T. K., et al. (2006). Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Applied and Environmental Microbiology, 72(2), 1129–1134.

    Article  CAS  Google Scholar 

  14. Sriprang, R., Hayashi, M., et al. (2002). A novel bioremediation system for heavy metal using the symbiosis between leguminous plant and genetically engineered rhizobia. Journal of Biotechnology, 99, 279–293.

    Article  CAS  Google Scholar 

  15. Ike, A., Sriprang, R., et al. (2007). Bioremediation of cadium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere, 66, 1670–1676.

    Article  CAS  Google Scholar 

  16. Hao, X. L., & Lin, Y. B. (2012). Draft genome sequence of plant growth-promoting rhizobium Mesorhizobium amorphae, isolated from zinc-lead mine tailings. Journal of Bacteriology, 194(3), 736–737.

    Article  CAS  Google Scholar 

  17. Mohamad, O. A., Hao, X. L., et al. (2012) Biosorption of copper (II) from aqueous solution using non-living Mesorhizobium amorphae strain CCNWGS0123. Microbes Environment, 27, 234–241.

    Google Scholar 

  18. Gadd, G. M. (1990). Heavy metal accumulation by bacteria and other microorganisms. Cellular and Molecular Life Sciences, 46(8), 834–840.

    Article  CAS  Google Scholar 

  19. Kobya, M. (2004). Adsorption, kinetic and equilibrium studies of Cr(VI) by hazelnut shell activated carbon. Adsorption Science and Technology, 22, 51–64.

    Article  CAS  Google Scholar 

  20. Bishnoi, N. R., Kumar, R., et al. (2007). Biosorption of Cr(III) from aqueous solution using algal biomass Spirogyra spp. Journal of Hazardous Materials, 145(1–2), 142–147.

    Article  CAS  Google Scholar 

  21. Tobin, J. M., Cooper, D. G., et al. (1984). Uptake of metal ions by Rhizopus arrihizus biomass. Applied and Environmental Microbiology, 4, 821–824.

    Google Scholar 

  22. Stöhr, C., Horst, J., et al. (2001). Application of the surface complex formation model to ion exchange equilibrium l part. V. Adsorption of heavy metal salts onto weakly basic anion exchangers. Reactive and Functional Polymers, 49, 117–132.

    Article  Google Scholar 

  23. Murphy, V., Hughes, H., et al. (2007). Copper binding by dried biomass of red, green and brown macroalgae. Water Research, 41, 731–740.

    Article  CAS  Google Scholar 

  24. Ma, W., Tobin, J. M., et al. (2004). Determination and modeling of effects of p H on peat biosorption of chromium, copper and cadmium. Biochemical Engineering Journal, 18(1), 33–40.

    Article  CAS  Google Scholar 

  25. Cossich, E. S., Granhen, C. R., et al. (2002). Biosorption of chromium (III) by Sargassum sp. biomass. Electronic Journal of Biotechnology, 5(2), 6–7.

    Google Scholar 

  26. Sari, A., Mendil, D., et al. (2008). Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 144(1), 1–9.

    Article  CAS  Google Scholar 

  27. Wang, X. S., Qin, Y., et al. (2006). Removal of Ni(II), Zn(II) and Cr(VI) from aqueous solution by Alternanthera philoxeroides biomass. Journal of Hazardous Materials, 138(3), 582–588.

    Article  CAS  Google Scholar 

  28. Vijayaraghavan, K., & Yun, Y. S. (2007). Chemical modification and immobilization of Corynebacterium glutamicum for biosorption of reactive black 5 from aqueous solution. Industrial and Engineering Chemistry Research, 46, 608–617.

    Article  CAS  Google Scholar 

  29. Chen, J. P., Yang, L., et al. (2005). Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption. Industrial and Engineering Chemistry Research, 44, 9931–9942.

    Article  CAS  Google Scholar 

  30. Murphy, V., Hughes, H., et al. (2008). Comparative study of chromium biossorption by red, green and brown seaweed biomass. Chemosphere, 70, 1128–1134.

    Article  CAS  Google Scholar 

  31. Zubair, A., Bhatti, H. N., et al. (2008). Kinetic and equilibrium modeling for cr (iii) and cr (vi) removal from aqueous solutions by citrus reticulate waste biomass. Water, Air, and Soil Pollution, 91, 305–318.

    Article  Google Scholar 

  32. Nasernejad, B., Zadeh, T. E., et al. (1996). The selective biosorption of chromium (VI) and copper (II) ions from binary metal mixtures by R. arrhizus. Process Biochemistry, 31(6), 561–572.

    Article  Google Scholar 

  33. Ucun, H., Aksakal, O., et al. (2009). Copper (II) and zinc (II) biosorption on Pinus sylvestris. Journal of Hazardous Materials, 161(2–3), 1040–1045.

    Article  CAS  Google Scholar 

  34. Li, H. F., Lin, Y. B., et al. (2010). Biosorption of Zn(II) by live and dead cells of Streptommyces ciscaucasicus strain CCNWHX72-14. Journal of Hazardous Materials, 179, 151–159.

    Article  CAS  Google Scholar 

  35. Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59(2–3), 203–216.

    Article  CAS  Google Scholar 

  36. Chand, S., Agarwal, V. K., et al. (1994). Removal of hexavalent Cr from wastewater by adsorption. Journal of Environmental Health, 36, 151–158.

    CAS  Google Scholar 

  37. Blázquez, G., & Hernáinz, F. (2009). The effect of p H on the biosorption of Cr(III) and Cr(VI) with olive stone. Chemical Engineering Journal, 48(2–3), 473–479.

    Article  Google Scholar 

  38. Kratochvil, D., Pimentel, P., et al. (1998). Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environmental Science and Technology, 32, 2693–2698.

    Article  CAS  Google Scholar 

  39. Kang, S. Y., Lee, J. U., et al. (2007). Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochemical Engineering Journal, 36, 54–58.

    Article  Google Scholar 

  40. Langmuir (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40, 1361.

  41. Mckay, G., Blair, H. S., et al. (1982). Adsorption of dyes on chitin I. Equilibrium studies. Journal of Applied Polymer Science, 27(8), 3043–3057.

    Article  CAS  Google Scholar 

  42. Gupta, V. K., & Rastogi, A. (2005). Biosorption of copper (II) from aqueous solutions by Spirogyra species. Journal of Colloid and Interface Science, 296(1), 59–63.

    Article  Google Scholar 

  43. Hammaini, A., González, F., et al. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of Environmental Management, 84(4), 419–426.

    Article  CAS  Google Scholar 

  44. Agarwal, G. S., Bhuptawat, H. K., et al. (2006). Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresource Technology, 97(7), 949–956.

    Article  CAS  Google Scholar 

  45. Blázquez, G., Hernáinz, F., et al. (2009). The effect of pH on the biosorption of Cr(III) and Cr(VI) with olive stone. Chemical Engineering Journal, 148(2–3), 473–479.

    Article  Google Scholar 

  46. Park, D., Yun, Y., et al. (2004). Reduction of hexavalent chromium with the brown seaweed ecklonia biomass. Environmental Science and Technology, 38, 4860–4864.

    Article  CAS  Google Scholar 

  47. Elangovan, R., Abhipsa, S., et al. (2006). Reduction of Cr(VI) by a Bacillus sp. Biotechnology Letters, 28, 247–252.

    Article  CAS  Google Scholar 

  48. Kapoor, A., & Viraraghavan, T. (1997). Heavy metal biosorption sites in Aspergillus niger. Bioresource Technology, 61(3), 221–227.

    Article  CAS  Google Scholar 

  49. Wang, S. X., Li, Y., et al. (2010). Adsorption of Cr(VI) from aqueous solutions by Staphylococcus aureus biomass. Clean–Soil, Air, Water, 38(5–6), 500–505.

    Article  CAS  Google Scholar 

  50. Loukidou, M. X., Zouboulis, A. I., et al. (2004). Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Physicochemical and Engineering Aspect, 242, 93–104.

    Article  CAS  Google Scholar 

  51. Shaili, S., & Indu, S. T. (2006). Biosorption potency of Aspergillus niger for removal of chromium (vi). Current Microbiology, 53, 232–237.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by projects from National Science Foundation of China (31125007, 30970003, 30900215, and 30630054). The authors are also grateful for the help from Dr. Elizabeth in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehong Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 9

SEM and EDX analysis of Cr-loaded M. amorphae CCNWGS0123. a, b, and c stands for SEMgraphs of biomass loaded with no Cr, Cr(VI), and Cr(III), d, e, and f represents the EDX spectra of biomass loaded with no Cr, Cr(VI), and Cr(III), respectively (GIF 789 kb)

High resolution (TIF 3974 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, P., Hao, X., Mohamad, O.A. et al. Comparative Study of Chromium Biosorption by Mesorhizobium amorphae Strain CCNWGS0123 in Single and Binary Mixtures. Appl Biochem Biotechnol 169, 570–587 (2013). https://doi.org/10.1007/s12010-012-9976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9976-1

Keywords

Navigation