Skip to main content
Log in

Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Cr(VI) is a well-known highly toxic metal, considered a priority pollutant. Industrial sources of Cr(VI) include leather tanning, cooling tower blowdown, plating, electroplating, anodizing baths, rinse waters, etc. This article includes a survey of removal techniques for Cr(VI)-contaminated aqueous solutions. A particular focus is given to adsorption, membrane filtration, ion exchange, and electrochemical treatment methods. The primary objective of this article is to provide recent information about the most widely used techniques for Cr(VI) removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aggarwal, D., Goyal, M., & Bansal, R. C. (1999). Adsorption of chromium by activated carbon from aqueous solution. Carbon, 37(12), 1989–1997. doi:10.1016/S0008-6223(99)00072-X.

    Article  CAS  Google Scholar 

  • Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7(4), 71–79.

    CAS  Google Scholar 

  • Alaerts, G. J., Jitjaturant, V., & Kelderman, P. (1989). Use of coconut shell-based activated carbon for chromium (VI) removal. Water Science and Technology, 21(12), 1701–1704.

    CAS  Google Scholar 

  • Allen, S. J., Gan, Q., Matthews, R., & Johnson, P. A. (2005). Kinetic modeling of the adsorption of basic dyes by kudzu. Journal of Colloid and Interface Science, 286(1), 101–109. doi:10.1016/j.jcis.2004.12.043.

    Article  CAS  Google Scholar 

  • Aoki, T., & Munemori, M. (1982). Recovery of Cr (VI) from wastewater with Iron (III) Hydroxide: I. Adsorption mechanism of Cr (VI) on Iron (III) hydroxide. Water Research, 16, 793–796. doi:10.1016/0043-1354(82)90006-9.

    Article  CAS  Google Scholar 

  • Araki, T., & Tsukube, H. (1990). Liquid Membranes: Chemical Applications CRC Press, pp. 35–36.

  • Argun, M. E., Dursun, S., Ozdemir, C., & Karatas, M. (2007). Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. Journal of Hazardous Materials, 141(1), 77–85. doi:10.1016/j.jhazmat.2006.06.095.

    Article  CAS  Google Scholar 

  • Aroua, M. K., Zuki, F. M., & Sulaiman, N. M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials, 147(3), 752–758. doi:10.1016/j.jhazmat.2007.01.120.

    Article  CAS  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97(1–3), 219–243. doi:10.1016/S0304-3894(02)00263–7.

    Article  CAS  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2004). Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54(7), 951–967. doi:10.1016/j.chemosphere.2003.10.001.

    Article  CAS  Google Scholar 

  • Baral, S. S., Das, S. N., & Rath, P. (2006). Cr(VI) removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal, 31(3), 216–222. doi:10.1016/j.bej.2006.08.003.

    Article  CAS  Google Scholar 

  • Barnowski, C., Jakubowski, N., Stuewer, D., & Broekaert, J. A. C. (1997). Speciation of chromium by direct coupling of ion exchange chromatography with ICP-MS. At. Spectrom, 1155(12), 1155–1161. doi:10.1039/a702120h.

    Article  Google Scholar 

  • Basso, M. C., Cerrella, E. G., & Cukierman, A. L. (2002). Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater. Industrial & Engineering Chemistry Research, 41(15), 3580–3585. doi:10.1021/ie020023h.

    Article  CAS  Google Scholar 

  • Berkeley, R. C. W. (1979). Chitin, Chitosan and Their Degradative Enzymes. In R. C. W. Berkeley, C. W. Gooday, & D. C. Elwood (Eds.), Microbial polysaccharides (pp. 205–236). New York: Academic Press.

    Google Scholar 

  • Bohdziewicz, J. (2000). Removal of chromium ions (VI) from underground water in the hybrid complexation-ultrafiltration process. Desalination, 129(3), 227–235. doi:10.1016/S0011-9164(00)00063-1.

    Article  CAS  Google Scholar 

  • Brown, P. A., Gill, S. A., & Allen, S. J. (2000). Metal removal from wastewater using peat. Water Research, 34(16), 3907–3916. doi:10.1016/S0043–1354(00)00152–4.

    Article  CAS  Google Scholar 

  • Candela, M. P., Martinez, J. M., & Macia, R. T. (1995). Chromium (VI) removal with activated carbons. Water Research, 29(9), 2174–2180. doi:10.1016/0043–1354(95)00035-J.

    Article  Google Scholar 

  • Chaiyasith, S., Chaiyasith, P., & Septhu, C. (2006). Removal of cadmium and nickel from aqueous solution by adsorption onto treated fly ash from Thailand. Thammasat International Journal of Science and Technology, 1l(2), 13–20.

    Google Scholar 

  • Chaudry, M. A., Ahmad, S., & Malik, M. T. (1997). Supported liquid membrane (SLM) technique applicability for the speciation of chromium from tannery wastes. Waste Management (New York, N.Y.), 17(4), 211–218. doi:10.1016/S0956-053X(97)10007-1.

    CAS  Google Scholar 

  • Chiha, M., Samar, M. H., & Hamdaoui, O. (2006). Extraction of chromium (VI) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM). Desalination, 194(1–3), 69–80. doi:10.1016/j.desal.2005.10.025.

    Article  CAS  Google Scholar 

  • Chingombe, P., Saha, B., & Wakeman, R. J. (2005). Surface modification and characterisation of a coal-based activated carbon. Carbon, 43(15), 3132–3143. doi:10.1016/j.carbon.2005.06.021.

    Article  CAS  Google Scholar 

  • Cimino, G., Passerini, A., & Toscano, G. (2000). Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Research, 34(11), 2955–2962. doi:10.1016/S0043–1354(00)00048–8.

    Article  CAS  Google Scholar 

  • Dakiky, M., Khamis, M., Manassra, A., & Mer’eb, M. (2002). Selective adsorption of Cr(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 6(4), 533–540. doi:10.1016/S1093–0191(01)00079-X.

    Article  CAS  Google Scholar 

  • Davis, A. P., Bernstein, C., & Gietka, P. M. (1995). Waste minimization in electropolishing: Process control. In Arup K. Sengupta (Ed.), Proceedings of the Twenty-Seventh Mid-Atlantic Industrial Waste Conference: Hazardous and industrial wastes (pp. 62–71). Lancaster: Technomic Publishing.

    Google Scholar 

  • Demirbas, A. (2008). Heavy metal adsorption onto agro based waste materials: A review. Journal of Hazardous Materials, 157(2–3), 220–229. doi:10.1016/j.jhazmat.2008.01.024.

    Article  CAS  Google Scholar 

  • Djane, N. K., Ndung’u, K., Johnsson, C., Sartz, H., Tornstrom, T., & Mathiasson, L. (1999). Chromium speciation in natural waters using serially connected supported liquid membranes. Talanta, 48(5), 1121–1132. doi:10.1016/S0039-9140(98)00334-8.

    Article  CAS  Google Scholar 

  • Dubey, S. P., & Gopal, K. (2007). Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study. Journal of Hazardous Materials, 145(3), 465–470.

    Article  CAS  Google Scholar 

  • Dzyazko, Y. S., Mahmud, A., Lapicque, F., & Belyakov, V. N. (2007). Cr(VI) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters. Journal of Applied Electrochemistry, 37(2), 209–217.

    Article  CAS  Google Scholar 

  • Esmaeili, A., Mesdaghi nia, A., & Vazirinejad, R. (2005). Chromium (III) removal and recovery from tannery wastewater by precipitation process. American Journal of Applied Sciences, 2(10), 1471–1473.

    Article  CAS  Google Scholar 

  • Gaballah, I., Goy, D., Allain, E., Kilbertus, G., & Thauront, J. (1997). Recovery of copper through decontamination of synthetic solutions using modified barks. Met. Metall. Trans B, 28(1), 13–23.

    Article  Google Scholar 

  • Gardea-Torresdey, J. L., de la Rosa, G., & Peralta-Videa, J. R. (2004). Use of phytofiltration technologies in the removal of heavy metals: A review. Pure and Applied Chemistry, 76(4), 801–813.

    Article  CAS  Google Scholar 

  • Gil, R. A., Cerutti, S., G’asquez, J. A., Olsina, R. A., & Martinez, L. D. (2006). Preconcentration and speciation of chromium in drinking water samples by coupling of on-line sorption on activated carbon to ETAAS determination. Talanta, 1065(68), 1065–1070.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Morhan, D., Sharma, S., & Park, K. T. (1999). Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ash—a sugar industry waste material. Environmentalist, 19(2), 129–136.

    Article  Google Scholar 

  • Hafiane, A., Lemordant, D., & Dhahbi, M. (2000). Removal of Cr(VI) by nanofiltration. Desalination, 130(3), 305–312.

    Article  CAS  Google Scholar 

  • Hamadi, N. K., Chen, X. D., Farid, M. M., & Lu, M. G. Q. (2001). Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chemical Engineering Journal, 84(2), 95–105.

    Article  CAS  Google Scholar 

  • Han, I., Schlautman, M. A., & Batchelor, B. (2000). Removal of Cr(VI) from Groundwater by Granular Activated Carbon. Water Environment Research, 72(1), 29–39.

    Article  CAS  Google Scholar 

  • Hashem, A., Akasha, R. A., Ghith, A., & Hussein, D. A. (2007). Adsorbent based on agricultural wastes for heavy metal and dye removal. A review. Energy Edu. Sci. Technol, 19, 69–86.

    CAS  Google Scholar 

  • Hu, Z., Lei, L., Li, Y., & Ni, Y. (2003). Chromium adsorption on high-performance activated carbons from aqueous solution. Sep. Purif. Technol, 31(1), 13–18.

    Article  CAS  Google Scholar 

  • Huang, C. P., & Wu, M. H. (1975). Chromium removal by carbon adsorption. J. Water Pollut. Control Federation, 47(10), 2437–2446.

    CAS  Google Scholar 

  • Jancuk, W. A., & Fisher, J. R. (1995). Research laboratory wastewater treatment process. In Arup. K. Sengupta (Ed.), Proceedings of the Twenty-Seventh Mid-Atlantic Industrial Waste Conference: Hazardous and industrial wastes (pp. 405–413). Lancaster: Technomic Publishing.

    Google Scholar 

  • Janssen, L. J. J., & Koene, L. (2002). The role of electrochemistry and electrochemical technology in environmental protection. Chemical Engineering Journal, 85(2–3), 137–146.

    Article  CAS  Google Scholar 

  • Kabay, N., Arda, M., Saha, B., & Streat, M. (2003). Removal of Cr(VI) by solvent impregnated resins (SIR) containing aliquat 336. Reactive & Functional Polymers, 54(1–3), 103–115.

    Article  CAS  Google Scholar 

  • Karthikeyan, T., Rajgopal, S., & Miranda, L. R. (2005). Chromium(VI) adsorption from aqueous solution by Hevea brasiliensis sawdust activated carbon. Journal of Hazardous Materials, 124(1–3), 192–199.

    Article  CAS  Google Scholar 

  • Katz, F., & Slem, H. (1994). The biological and environmental chemistry of chromium (pp. 51–58). New York: VCH.

    Google Scholar 

  • Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. A. (1999). Critical Assessment of Chromium in the Environment Critical Reviews in Environmental Science and Technology. Critical Reviews in Environmental Science and Technology, 29(1), 1–46.

    Article  CAS  Google Scholar 

  • Kinoshita, K. (1988). Carbon electrochemical and physicochemical properties. New York: Wiley.

    Google Scholar 

  • Kiptoo, J. K., Ngila, J. C., & Sawula, G. M. (2004). Speciation studies of nickel and chromium in wastewater from an electroplating plant. Talanta, 64(1), 54–59.

    Article  CAS  Google Scholar 

  • Kobya, M. (2004). Adsorption, Kinetic and Equilibrium Studies of Cr(VI) by Hazelnut Shell Activated Carbon. Adsorption Science & Technology, 22(1), 51–64.

    Article  CAS  Google Scholar 

  • Kongsricharoern, N., & Polprasert, C. (1995). Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. Water Science and Technology, 31(9), 109–117.

    Article  CAS  Google Scholar 

  • Kongsricharoern, N., & Polprasert, C. (1996). Chromium removal by a bipolar electrochemical precipitation process. Water Science and Technology, 34(9), 109–116.

    Article  CAS  Google Scholar 

  • Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107(3), 263–283.

    Article  CAS  Google Scholar 

  • Kratochvil, D., Pimentel, P., & Volesky, B. (1998). Removal of trivalent and Cr(VI) by seaweed biosorbent. Environmental Science & Technology, 32(18), 2693–2698.

    Article  CAS  Google Scholar 

  • Kratochvil, D., & Volesky, B. (1998). Advances in the biosorption of heavy metals. J. Trends Biotechnol, 16(7), 291–300.

    Article  CAS  Google Scholar 

  • Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1–2), 83–98.

    CAS  Google Scholar 

  • Lee, H. S., & Volesky, B. (1997). Interaction of light metals and protons with seaweed biosorbent. Water Research, 31(12), 3082–3088.

    Article  CAS  Google Scholar 

  • Lee, M. Y., Hong, K. J., Shin-Ya, Y., & Kajiuchi, T. (2005). Adsorption of Cr(VI) by chitosan-based polymeric surfactants. Journal of Applied Polymer Science, 96(1), 44–50.

    Article  CAS  Google Scholar 

  • Li, N. N., Calo, J. M. (1992). Separation and purification technology. CRC Press, pp. 198–199.

  • Lin, S. H., & Kiang, C. D. (2003). Chromic acid recovery from waste acid solution by an ion exchange process: equilibrium and column ion exchange modeling. Chemical Engineering Journal, 92(1–3), 193–199.

    Article  CAS  Google Scholar 

  • Liu, S. X., Chen, X., Chen, X. Y., Liu, Z. F., & Wang, H. L. (2007). Activated carbon with excellent chromium(VI) adsorption performance prepared by acid–base surface modification. Journal of Hazardous Materials, 141(1), 315–319.

    Article  CAS  Google Scholar 

  • Martinez, S. A., Rodriguez, M. G., Aguolar, R., Soto, G. (2004). Removal of chromium hexavalent from rinsing chromating waters electrochemicals reduction in a laboratory pilot plant. Water Science and Technology, 49(1), 115–122.

    Google Scholar 

  • Mittal, A., Krishnan, L., & Gupta, V. K. (2005). Removal and recovery of malachite green from wastewater using an agricultural waste material. Sep. Purif. Technol, 43(2), 125–133.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U. Jr. (2006). Activated carbons and low cost adsorbents for remediation of tri- and Cr(VI) from water. Journal of Hazardous Materials, 137(2), 762–811.

    Article  CAS  Google Scholar 

  • Mohan, D., Singh, K. P., & Singh, V. K. (2005). Removal of Cr(VI) from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Industrial & Engineering Chemistry Research, 44(4), 1027–1042.

    Article  CAS  Google Scholar 

  • Mohanty, K., Jha, M., Meikap, B. C., & Biswas, M. N. (2005). Removal of chromium(VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chemical Engineering Science, 60(11), 3049–3059.

    Article  CAS  Google Scholar 

  • Muthukrishnan, M., & Guha, B. K. (2008). Effect of pH on rejection of Cr(VI) by Nanofiltration. Desalination, 219(1–3), 171–178.

    Article  CAS  Google Scholar 

  • Nakajima, A., & Sakaguchi, T. (1990). Recovery and removal of uranium by using plant wastes. Biomass, 21, 55–63.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Ranganathan, K. (1993). Waste Fe(III)/Cr(III) hydroxide as adsorbent for the removal of Cr(VI) from aqueous solution and chromium plating industry wastewater. Environmental Pollution, 82(3), 255–261.

    Article  CAS  Google Scholar 

  • Natale, F. D., Lancia, A., Molino, A., Musmarra, D. (2007). Removal of chromium ions from aqueous solutions by adsorption on activated carbon and char. Journal of Hazardous Materials, 145(3), 381–390.

    Google Scholar 

  • Nomanbhay, S. M. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology, 8(1), 43–53.

    Article  CAS  Google Scholar 

  • Onyancha, D., Mavura, W., Ngila, J. C., Ongoma, P., & Chacha, J. (2008). Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum. Journal of Hazardous Materials, 158(2–3), 605–614.

    Article  CAS  Google Scholar 

  • Pagnanelli, F., Mainelli, S., Veglio, F., & Toro, L. (2003). Heavy metal removal by olive pomace: biosorbent characterization and equilibrium modeling. Chemical Engineering Science, 58(20), 4709–4717.

    Article  CAS  Google Scholar 

  • Park, S. J., & Jung, W. Y. (2001). Removal of chromium by activated carbon fibers plated with copper metal. Carbon Science, 2(1), 15–21.

    Google Scholar 

  • Park, D., Yun, Y. S., Jo, J. H., & Park, J. M. (2006). Biosorption process for treatment of electroplating wastewater containing Cr(VI): Laboratory-scale feasibility test. Industrial & Engineering Chemistry Research, 45(14), 5059–5065.

    Article  CAS  Google Scholar 

  • Pehlivan, E., & Altun, T. (2008). Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. Journal of Hazardous Materials, 155(1–2), 378–384.

    Article  CAS  Google Scholar 

  • Pradhan, J., Das, S. N., & Thakur, R. S. (1999). Adsorption of Cr(VI) from aqueous solution by using activated RedMud. Journal of Colloid and Interface Science, 217(1), 137–141.

    Article  CAS  Google Scholar 

  • Pugazhenthi, G., Sachan, S., Kishore, N., & Kumar, A. (2005). Separation of chromium (VI) using modified ultrafiltration charged carbon membrane and its mathematical modeling. Journal of Membrane Science, 254(1–2), 229–239.

    Article  CAS  Google Scholar 

  • Rana, P., Mohan, N., & Rajagopal, C. (2004). Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes. Water Research, 38(12), 2811–2820.

    Article  CAS  Google Scholar 

  • Ravikumar, K., Deebika, B., & Balu, K. (2005). Decolourization of aqueous dye solutions by a novel adsorbent: Application of statistical designs and surface plots for the optimization and regression analysis. Journal of Hazardous Materials, 122(1–2), 75–83.

    Article  CAS  Google Scholar 

  • Ruthven, D. M. (1984). Principles of adsorption and adsorption process. New York: Wiley.

    Google Scholar 

  • Sankararamakrishnan, N., Dixit, A., Iyengar, L., & Sanghi, R. (2006). Removal of Cr(VI) using a novel cross linked xanthated chitosan. Bioresource Technology, 97(18), 2377–2382.

    CAS  Google Scholar 

  • Sapari, N., Idris, A., & Hisham, N. (1996). Total removal of heavy metal from mixed plating rinse wastewater. Desalination, 106(1–3), 419–422.

    CAS  Google Scholar 

  • Schmuhl, R., Krieg, H. M., & Keizer, K. (2001). Adsorption of Cu(II) and Cr(VI) ions by chitosan: Kinetics and equilibrium studies. Water. S.A., 27(1), 1–7.

    CAS  Google Scholar 

  • Selomulya, C., Meeyoo, V., & Amal, R. (1999). Mechanisms of Cr(VI) removal from water by various types of activated carbons. Journal of Chemical Technology and Biotechnology, 74(2), 111–122.

    Article  CAS  Google Scholar 

  • Sharma, D. C., & Forster, C. F. (1996). Removal of hexavalent chromium from aqueous solutions by granular activated carbon. Water S.A., 22(2), 153–160.

    CAS  Google Scholar 

  • Song, Z., Williams, C. J., & Edyvean, R. G. J. (2000). Sedimentation of tannery wastewater. Water Research, 34(7), 2171–2176.

    Article  CAS  Google Scholar 

  • Spinelli, V. A., Laranjeira, M. C. M., Fa’vere, V. T. (2004). Preparation and characterization of quaternary chitosan salt: adsorption equilibrium of chromium(VI) ion. Reactive & Functional Polymers, 61(3), 347–352.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., Gupta, V. K., & Mohan, D. (1997). Removal of lead and chromium by activated slag—A blast-furnace waste. Journal of Environmental Engineering, 123(5), 461–468.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., Pant, N., & Pal, N. (1987). Studies on the efficiency of a local fertilizer waste as a low cost adsorbent. Wat. Res, 21(11), 1389–1394.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., Tyagi, R., & Pant, N. (1989). Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Research, 23(9), 1161–1165.

    Article  CAS  Google Scholar 

  • Suzuki (1990). Adsorption Engineering, Elsevier, Amsterdam, (37–39).

  • Tobin, J. M., & Roux, J. C. (1998). Mucor biosorbent for chromium removal from tanning effluent. Wat. Res., 32(5), 1407–1416.

    Article  CAS  Google Scholar 

  • Tukaram Bai, M., venkata Ratman, M., Subba Rao, D., Venkateswarlu, P. (2005). Removal of chromium from wastewater by adsorption with used coffee powder, In: Vibhuti N Misra, Vibhuti

  • Udaybhaskar, P., Iyengar, L., & Rao, A. V. S. P. (1990). Cr(VI) interaction with chitosan. Journal of Applied Polymer Science, 39(3), 739–747.

    Article  CAS  Google Scholar 

  • Venitt, S., & Levy, L. S. (1974). Mutagenicity of chromates in bacteria and its relevances to chromate carcinogenesis. Nature, 250(5466), 493–495.

    Article  CAS  Google Scholar 

  • Vigneswaran, S., Ngo, H. H., Chaudhary, D. S., & Hung, Y. T. (2004). Physico–chemical treatment processes for water reuse. In L. K. Wang, Y. T. Hung, & N. K. Shammas (Eds.), Physicochemical treatment processes, vol. 3 (pp. 635–676). New Jersey: Humana Press.

    Google Scholar 

  • Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59(2–3), 203–216.

    Article  CAS  Google Scholar 

  • Volesky, B. (2003). Sorption and Biosorption, Montreal-St. Lambert, Quebec, Canada. BV Sorbex Inc., 11, 258–263.

    Google Scholar 

  • Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress, 11(3), 235–250.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2004). Guidelines for drinking-water quality (third ed.). Recommendations. WHO, Geneva, 1, 334–335.

  • Xu, Y., Xiao, H., & Sun, S. (2005). Study on anaerobic treatment of wastewater containing hexavalent chromium. Journal of Zhejiang University Science, 6(6), 574–579.

    Article  CAS  Google Scholar 

  • Yang, T. C., & Zall, R. R. (1984). Absorption of metals by natural polymers generated from seafood processing wastes. Industrial & Engineering Chemistry Product Research and Development, 23(1), 168–172.

    Article  CAS  Google Scholar 

  • Yilmaz, A., Kaya, A., Alpoguz, H. K., Ersoz, M., & Yilmaz, M. (2008). Kinetic analysis of chromium(VI) ions transport through a bulk liquid membrane containing p-tert-butylcalix[4]arene dioxaoctylamide derivative. Separation and Purification Technology, 59(1), 1–8.

    Article  CAS  Google Scholar 

  • Yin, C. Y., Aroua, M. K., & Wan Daud, W. M. A. (2007). Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separation and Purification Technology, 52(3), 403–415.

    Article  CAS  Google Scholar 

  • Zhao, N., Na, W., Li, J., Qiao, Z., Jing, C., & Fei, H. (2005). Surface properties of chemically modified activated carbons for adsorption rate of Cr(VI). Chemical Engineering Journal, 115(1–2), 133–138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kheireddine Aroua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owlad, M., Aroua, M.K., Daud, W.A.W. et al. Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review. Water Air Soil Pollut 200, 59–77 (2009). https://doi.org/10.1007/s11270-008-9893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9893-7

Keywords

Navigation