Skip to main content
Log in

Analysis of rheology and wall depletion of microfibrillated cellulose suspension using optical coherence tomography

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A rheometric method based on velocity profiling by optical coherence tomography (OCT) was used in the analysis of rheological and boundary layer flow properties of a 0.5% microfibrillated cellulose (MFC) suspension. The suspension showed typical shear thinning behaviour of MFC in the interior part of the tube, but the measured shear viscosities followed interestingly two successive power laws with an identical flow index (exponent) and a different consistency index. This kind of viscous behaviour, which has not been reported earlier for MFC, is likely related to a sudden structural change of the suspension. The near-wall flow showed existence of a slip layer of 2–12 μm thickness depending on the flow rate. Both the velocity profile measurement and the amplitude data obtained with OCT indicated that the slip layer was related to a concentration gradient appearing near the tube wall. Close to the wall the fluid appeared nearly Newtonian with high shear rates, and the viscosity approached almost that of pure water with decreasing distance from the wall. The flow rates given by a simple model that included the measured yield stress, viscous behavior, and slip behavior, was found to give the measured flow rates with a good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier J (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686. doi:10.1016/j.carbpol.2009.11.045

    Article  CAS  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non Newtonian Fluid Mech 56:221–251. doi:10.1016/0377-0257(94)01282-M

    Article  CAS  Google Scholar 

  • Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Amsterdam

    Google Scholar 

  • Bergman TL, Incropera FP (2011) Fundamentals of heat and mass transfer. Wiley, Hoboken

    Google Scholar 

  • Bonesi M, Churmakov D, Meglinski I (2007) Study of flow dynamics in complex vessels using doppler optical coherence tomography. Meas Sci Technol 18:3279–3286. doi:10.1088/0957-0233/18/11/003

    Article  CAS  Google Scholar 

  • Bounoua S, Lemaire E, Férec J, Ausias G, Kuzhir P (2016) Shear-thinning in concentrated rigid fiber suspensions: aggregation induced by adhesive interactions. J Rheol 60:1279–1300. doi:10.1122/1.4965431

    Article  CAS  Google Scholar 

  • Bukowska DM, Derzsi L, Tamborski S, Szkulmowski M, Garstecki P, Wojtkowski M (2013) Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography. Opt Express 21:24025–24038. doi:10.1364/OE.21.024025

    Article  Google Scholar 

  • Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20:149–157. doi:10.1007/s10570-012-9829-7

    Article  CAS  Google Scholar 

  • Cheng DC (1986) Yield stress: a time-dependent property and how to measure it. Rheol Acta 25:542–554. doi:10.1007/BF01774406

    Article  CAS  Google Scholar 

  • Cloitre M, Bonnecaze R (2017) A review on wall slip in high solid dispersions. Rheol Acta 56:283–305. doi:10.1007/s00397-017-1002-7

    Article  CAS  Google Scholar 

  • Czajkowski J, Vilmi P, Lauri J, Sliz R, Fabritius T, Myllyla R (2012) Characterization of ink-jet printed RGB color filters with spectral domain optical coherence tomography. In Proc SPIE 8493:849308. doi:10.1117/12.929681

    Article  Google Scholar 

  • Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ (2010) The apparent yield stress of pulp fiber suspensions. J Rheol 54:1137–1154. doi:10.1122/1.3473923

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Gane PAC, Paltakari J (2013) Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind Eng Chem Res 52:16066–16083. doi:10.1021/ie4028878

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Rantanen J, Maloney TP, Gane P (2016) Gel structure phase behavior in micro nanofibrillated cellulose containing in situ precipitated calcium carbonate. J Appl Polym Sci 133:43486. doi:10.1002/app.43486 

    Article  Google Scholar 

  • Haavisto S, Liukkonen J, Jäsberg A, Koponen A, Lille M, Salmela J (2011) Laboratory-scale pipe rheometry: a study of a microfibrillated cellulose suspension. In: Proceedings of papercon, pp 704–717

  • Haavisto S, Salmela J, Jäsberg A, Saarinen T, Karppinen A, Koponen A (2015) Rheological characterization of microfibrillated cellulose suspension using optical coherence tomography. Tappi J 14:291–302

    CAS  Google Scholar 

  • Harvey M, Waigh TA (2011) Optical coherence tomography velocimetry in controlled shear flow. Phys Rev E 83:031502. doi:10.1103/PhysRevE.83.031502

    Article  CAS  Google Scholar 

  • Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154. doi:10.1039/C6NR03054H

    Article  CAS  Google Scholar 

  • Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, Hee M, Flotte T, Gregory K, Puliafito C, Fujimoto J (1991) Optical coherence tomography. Science 254:1178–1181. doi:10.1126/science.1957169

    Article  CAS  Google Scholar 

  • Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145. doi:10.1007/s10924-010-0248-2

    Article  CAS  Google Scholar 

  • Jaradat S, Harvey M, Waigh TA (2012) Shear-banding in polyacrylamide solutions revealed via optical coherence tomography velocimetry. Soft Matter 8:11677–11686. doi:10.1039/C2SM26395E

    Article  CAS  Google Scholar 

  • Jia Y, Bagnaninchi PO, Yang Y, Haj AE, Hinds MT, Kirkpatrick SJ, Wang RK (2009) Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds. J Biomed Opt 14:034014–034014. doi:10.1117/1.3130345

    Article  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. doi:10.1007/s10570-015-0551-0

    Article  CAS  Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31. doi:10.1007/s00396-013-3112-9

    Article  CAS  Google Scholar 

  • Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19:1807–1819. doi:10.1007/s10570-012-9766-5

    Article  CAS  Google Scholar 

  • Kumar V, Nazari B, Bousfield D, Toivakka M (2016) Rheology of microfibrillated cellulose suspensions in pressure-driven flow. Appl Rheol 26:43534. doi:10.3933/ApplRheol-26-43534

    Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433. doi:10.1007/s10570-007-9184-2

    Article  CAS  Google Scholar 

  • Lauri J, Bykov AV, Myllyla R (2011a) Determination of suspension viscosity from the flow velocity profile measured by Doppler Optical Coherence Tomography. Photon Lett Poland 3:82–84. doi:10.4302/plp.2011.2.13

    Article  CAS  Google Scholar 

  • Lauri J, Bykov AV, Priezzhev AV, Myllylä R (2011b) Experimental study of the multiple scattering effect on the flow velocity profiles measured in Intralipid phantoms by DOCT. Laser Phys 21:813–817. doi:10.1134/S1054660X11070164

    Article  CAS  Google Scholar 

  • Lauri J, Czajkowski J, Myllylä R, Fabritius T (2015) Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1 µm axial resolution. Flow Meas Instrum 43:1–5. doi:10.1016/j.flowmeasinst.2015.02.001

    Article  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi:10.1016/j.carbpol.2012.05.026

    Article  CAS  Google Scholar 

  • Markstedt K, Mantas A, Tournier I, Ávila H, Hägg D, Gatenholm P (2015) 3D Bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496. doi:10.1021/acs.biomac.5b00188

    Article  CAS  Google Scholar 

  • Martoïa F, Perge C, Dumont PJJ, Orgeas L, Fardin MA, Manneville S, Belgacem MN (2015) Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. Soft Matter 11:4742–4755. doi:10.1039/C5SM00530B

    Article  Google Scholar 

  • Metzner AB, Reed JC (1955) Flow of non-Newtonian fluids—correlation of the laminar, transition, and turbulent-flow regions. AIChE J 1:434–440. doi:10.1002/aic.690010409

    Article  CAS  Google Scholar 

  • Missoum K, Belgacem NM, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766. doi:10.3390/ma6051745

    Article  CAS  Google Scholar 

  • Moberg T, Sahlin K, Yao K, Geng S, Westman G, Zhou Q, Oksman K, Rigdahl M (2017) Rheological properties of nanocellulose suspensions: effects of fibril/particle dimensions and surface characteristics. Cellulose 24:2499–2510. doi:10.1007/s10570-017-1283-0

    Article  CAS  Google Scholar 

  • Moger J, Matcher SJ, Winlove CP, Shore A (2004) Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography. J Biomed Optics 9:982–994. doi:10.1117/1.1781163

    Article  Google Scholar 

  • Mykhaylyk OO, Warren NJ, Parnell AJ, Pfeifer G, Laeuger J (2016) Applications of shear-induced polarized light imaging (SIPLI) technique for mechano-optical rheology of polymers and soft matter materials. J Polym Sci, Part B: Polym Phys 54:2151–2170. doi:10.1002/polb.24111

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T (2015) Rheological measurements on nanofibrillated cellulose systems: a science in progress. In: Mondal MIH (ed) Cellulose and cellulose derivatives: synthesis, modification and applications. Nova Science Publishers, New York

    Google Scholar 

  • Nazari B, Kumar V, Bousfield D, Toivakka M (2016) Rheology of cellulose nanofibers suspensions: boundary driven flow. J Rheol 60:1151–1159. doi:10.1122/1.4960336

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439. doi:10.1016/j.carbpol.2014.05.092

    Article  CAS  Google Scholar 

  • Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47:283–300. doi:10.1007/s00397-008-0260-9

    Article  CAS  Google Scholar 

  • Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123. doi:10.1007/s10570-015-0798-5

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi:10.1021/bm061215p

    Article  Google Scholar 

  • Petrich MP, Koch DL, Cohen C (2000) An experimental determination of the stress–microstructure relationship in semi-concentrated fiber suspensions. J Non Newtonian Fluid Mech 95:101–133. doi:10.1016/S0377-0257(00)00172-5

    Article  CAS  Google Scholar 

  • Raiskinmäki P, Kataja M (2005) Disruptive shear stress measurements of fibre suspension using ultrasound Doppler techniques. Ann Trans The Nordic Rheol Soc 13:207–211

    Google Scholar 

  • Robles FE, Wilson C, Grant G, Wax A (2011) Molecular imaging true-colour spectroscopic optical coherence tomography. Nat Photon, 5:744–747. doi: http://www.nature.com/nphoton/journal/v5/n12/abs/nphoton.2011.257.html#supplementary-information

  • Saarinen T, Haavisto S, Sorvari A, Salmela J, Seppälä J (2014) The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography. Cellulose 21:1261–1275. doi:10.1007/s10570-014-0187-5

    Article  CAS  Google Scholar 

  • Salmela J, Haavisto S, Koponen A, Jäsberg A, Kataja M (2013) Rheological characterization of micro-fibrillated cellulose fibre suspension using multi scale velocity profile measurements. In: Proceedings of 15th fundamental research symphosium

  • Shao Y, Chaussy D, Grosseau P, Beneventi D (2015) Use of microfibrillated cellulose/lignosulfonate blends as carbon precursors: impact of hydrogel rheology on 3D printing. Ind Eng Chem Res 54:10575–10582. doi:10.1021/acs.iecr.5b02763

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  • Sorvari A, Saarinen T, Haavisto S, Salmela J, Vuoriluoto M, Seppälä J (2014) Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption. Carbohydr Polym 106:283–292. doi:10.1016/j.carbpol.2014.02.032

    Article  CAS  Google Scholar 

  • Swerin A, Ödberg L, Lindström T (1990) Deswelling of hardwood kraft pulp fibers by cationic polymers. Nord Pulp Pap Res J 5:188–196. doi:10.3183/NPPRJ-1990-05-04-p188-196

    Article  CAS  Google Scholar 

  • Vesterinen A, Myllytie P, Laine J, Seppälä J (2010) The effect of water-soluble polymers on rheology of microfibrillar cellulose suspension and dynamic mechanical properties of paper sheet. J Appl Polym Sci 116:2990–2997. doi:10.1002/app.31832

    CAS  Google Scholar 

  • Wang RK (2004) High-resolution visualization of fluid dynamics with Doppler optical coherence tomography. Meas Sci Technol 15:725–733. doi:10.1088/0957-0233/15/4/016

    Article  CAS  Google Scholar 

  • Wang XJ, Milner TE, Nelson JS (1995) Characterization of fluid flow velocity by optical Doppler tomography. Opt Lett 20:1337–1339. doi:10.1364/OL.20.001337

    Article  CAS  Google Scholar 

  • Wang L, Wang Y, Guo S, Zhang J, Bachman M, Li GP, Chen Z (2004a) Frequency domain phase-resolved optical Doppler and Doppler variance tomography. Opt Commun 242:345–350. doi:10.1016/j.optcom.2004.08.035

    Article  CAS  Google Scholar 

  • Wang L, Xu W, Bachman M, Li G, Chen Z (2004b) Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels. Appl Phys Lett 85:1855–1857. doi:10.1063/1.1785854

    Article  CAS  Google Scholar 

  • Wiklund JA, Stading M, Pettersson AJ, Rasmuson A (2006) A comparative study of UVP and LDA techniques for pulp suspensions in pipe flow. AIChE J 52:484–495. doi:10.1002/aic.10653

    Article  Google Scholar 

  • Yadav R, Lee K, Rolland JP, Zavislan JM, Aquavella JV, Yoon G (2011) Micrometer axial resolution OCT for corneal imaging. Biomed Opt Express 2:3037–3046. doi:10.1364/BOE.2.003037

    Article  Google Scholar 

  • Yang VXD, Gordon ML, Seng-Yue E, Lo S, Qi B, Pekar J, Mok A, Wilson BC, Vitkin IA (2003) High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of Xenopus laevis. Opt Express 11:1650–1658. doi:10.1364/OE.11.001650

    Article  Google Scholar 

  • Zhao Y, Chen Z, Saxer C, Xiang S, de Boer JF, Nelson JS (2000) Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett 25:114–116. doi:10.1364/OL.25.000114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Academy of Finland (project Rheological Properties of Complex Fluids) is gratefully acknowledged for supporting this work. We also want to thank senior research technician Ulla Salonen for the photograph of the MFC fibers (Fig. 1), and senior scientist Panu Lahtinen for preparing the MFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Koponen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauri, J., Koponen, A., Haavisto, S. et al. Analysis of rheology and wall depletion of microfibrillated cellulose suspension using optical coherence tomography. Cellulose 24, 4715–4728 (2017). https://doi.org/10.1007/s10570-017-1493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1493-5

Keywords

Navigation