Skip to main content
Log in

Perspectives on shear banding in complex fluids

  • Review
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this review, I present an idiosyncratic view of the current state of shear banding in complex fluids. Particular attention is paid to some of the outstanding issues and questions facing the field, including the applicability of models that have “traditionally” been used to model experiments; future directions and challenges for experimentalists; and some of the issues surrounding vorticity banding, which has been discussed theoretically and whose experiments are fewer in number yet, in many ways, more varied in character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams JM, Olmsted PD, Fielding SM (2007) The interplay between boundary conditions and flow geometries in shear banding: hysteresis, band configurations, and surface transitions. http://arxiv.org/abs/0710.3242v1

  • Ajdari A (1998) Rheological behavior of a solution of particles aggregating on the containing walls. Phys Rev E 58:6294–6297

    CAS  Google Scholar 

  • Annable T, Buscall R, Ettelaie R, Whittlestone D (1993) The rheology of solutions of associating polymers: comparison of experimental behavior with transient network theory. J Rheol 37:695

    CAS  Google Scholar 

  • Aradian A, Cates ME (2005) Instability and spatiotemporal rheochaos in a shear-thickening fluid model. Europhys Lett 70:397–403

    CAS  Google Scholar 

  • Bandyopadhyay R, Basappa G, Sood AK (2000) Observation of chaotic dynamics in dilute sheared aqueous solutions of CTAT. Phys Rev Lett 84:2022–2025

    CAS  Google Scholar 

  • Barentin C, Liu AJ (2001) Shear thickening in dilute solutions of wormlike micelles. Europhys Lett 55:432–438

    CAS  Google Scholar 

  • Barham PJ, Keller A (1990) Flow-induced liquid-liquid phase separation and adsorption entanglement layer formation in high-molecular-weight polymer solutions. Macromolecules 23:303–309

    CAS  Google Scholar 

  • Becu L, Manneville S, Colin A (2004) Spatiotemporal dynamics of wormlike micelles under shear. Phys Rev Lett 93:018301

    Google Scholar 

  • Becu L, Grondin P, Colin A, Manneville S (2005) How does a concentrated emulsion flow? Yielding, local rheology, and wall slip. Colloid Surf A-Physicochem Eng Asp 263:146–152

    CAS  Google Scholar 

  • Bécu L, Anache D, Manneville S, Colin A (2007) Evidence for three-dimensional unstable flows in shear-banding wormlike micelles. Phys Rev E 76:011503

    Google Scholar 

  • Bergenholtz J, Wagner NJ (1996) Formation of AOT/brine multilamellar vesicles. Langmuir 12:3122–3126

    CAS  Google Scholar 

  • Berret JF (1997) Transient rheology of wormlike micelles. Langmuir 13:2227–2234

    CAS  Google Scholar 

  • Berret J-F (2005) Molecular gels. In: Weiss RG, Terech P (eds) Chap. Rheology of wormlike micelles: equilibrium properties and shear banding transition. Springer, Dordrecht, pp 235–275

    Google Scholar 

  • Berret JF, Porte G (1999) Metastable versus unstable transients at the onset of a shear-induced phase transition. Phys Rev E 60:4268–4271

    CAS  Google Scholar 

  • Berret J, Séréro Y (2001) Evidence of shear-induced fluid fracture in telechelic polymer networks. Phys Rev Lett 87:48303

    CAS  Google Scholar 

  • Berret JF, Roux DC, Porte G, Lindner P (1994) Shear-induced isotropic-to-nematic phase-transition in equilibrium polymers. Europhys Lett 25:521–526

    CAS  Google Scholar 

  • Berret JF, Porte G, Decruppe JP (1997) Inhomogeneous shear flows of wormlike micelles: a master dynamic phase diagram. Phys Rev E 55:1668–1676

    CAS  Google Scholar 

  • Berret JF, Gamez-Corrales R, Oberdisse J, Walker LM, Lindner P (1998) Flow-structure relationship of shear-thickening surfactant solutions. Europhys Lett 41:677–682

    CAS  Google Scholar 

  • Bhave AV, Menon RK, Armstrong RC, Brown RA (1993) A constitutive equation for liquid-crystalline polymer solutions. J Rheol 37:413–441

    CAS  Google Scholar 

  • Boltenhagen P, Hu YT, Matthys EF, Pine DJ (1997) Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys Rev Lett 79:2359–2362

    CAS  Google Scholar 

  • Bonn D, Meunier J, Greffier O, Alkahwaji A, Kellay H (1998) Bistability in non-Newtonian flow: rheology of lyotropic liquid crystals. Phys Rev E 58:2115–2118

    CAS  Google Scholar 

  • Boukany PE, Tapadia P, Wang SQ (2006) Interfacial stick-slip transition in simple shear of entangled melts. J Rheol 50:641–654

    CAS  Google Scholar 

  • Britton MM, Callaghan PT (1999) Shear banding instability in wormlike micellar solutions. Eur Phys J B 7:237–249

    CAS  Google Scholar 

  • Bruinsma R, Gelbart WM, Benshaul A (1992) Flow-induced gelation of living (micellar) polymers. J Chem Phys 96:7710–7727

    CAS  Google Scholar 

  • Calderer MC, Forest MG, Wang Q (2004) Kinetic theories and mesoscopic models for solutions of nonhomogeneous liquid crystal polymers. J Non-Newton Fluid Mech 120:69–78

    CAS  Google Scholar 

  • Callaghan PT, Cates ME, Rofe CJ, Smeulders JAF (1996) A study of the spurt effect in wormlike micelles using nuclear-magnetic-resonance microscopy. J Phys II 6:375–393 (France)

    CAS  Google Scholar 

  • Cappelaere E, Berret JF, Decruppe JP, Cressely R, Lindner P (1997) Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: evidence of a shear-induced phase transition. Phys Rev E 56:1869–1878

    CAS  Google Scholar 

  • Castillo-Tejas J, Alvarado JFJ, Gonzalez-Alatorre G, Luna-Barcenas G, Sanchez IC, Macias-Salinas R, Manero O (2005) Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip. J Chem Phys 123:054907

    Google Scholar 

  • Cates ME (1990) Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers). J Phys Chem 94:371–375

    CAS  Google Scholar 

  • Cates M, Candau S (1990) Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2:6869–6892

    CAS  Google Scholar 

  • Cates ME, Candau SJ (2001) Ring-driven shear thickening in wormlike micelles? Europhys Lett 55:887–983

    CAS  Google Scholar 

  • Cates ME, Fielding SM (2006) Rheology of giant micelles. Adv Phys 55:799–879

    CAS  Google Scholar 

  • Cates ME, Turner MS (1990) Flow-induced gelation of rodlike micelles. Europhys Lett 11:681–686

    Google Scholar 

  • Cates ME, Head DA, Ajdari A (2002) Rheological chaos in a scalar shear-thickening model. Phys Rev E 66:025202

    CAS  Google Scholar 

  • Chakrabarti B, Das M, Dasgupta C, Ramaswamy S, Sood AK (2004) Spatiotemporal rheochaos in nematic hydrodynamics. Phys Rev Lett 92:055501

    Google Scholar 

  • Chen LB, Zukoski CF, Ackerson BJ, Hanley HJM, Straty GC, Barker J, Glinka CJ (1992) Structural-changes and orientational order in a sheared colloidal suspension. Phys Rev Lett 69:688–691

    CAS  Google Scholar 

  • Chen LB, Ackerson BJ, Zukoski CF (1994a) Rheological consequences of microstructural transitions in colloidal crystals. J Rheol 38:193–216

    CAS  Google Scholar 

  • Chen LB, Chow MK, Ackerson BJ, Zukoski CF (1994b) Rheological and microstructural transitions in colloidal crystals. Langmuir 10:2817–2829

    CAS  Google Scholar 

  • Cohen I, Mason TG, Weitz DA (2004) Shear-induced configurations of confined colloidal suspensions. Phys Rev Lett 93:46001

    Google Scholar 

  • Cook LP, Rossi LR (2004) Slippage and migration in models of dilute wormlike micellar solutions and polymeric fluids. J Non-Newton Fluid Mech 116:347–369

    CAS  Google Scholar 

  • Courbin L, Panizza P, Salmon JB (2004) Observation of droplet size oscillations in a two-phase fluid under shear flow. Phys Rev Lett 92:018305

    Google Scholar 

  • Das M, Chakrabarti B, Dasgupta C, Ramaswamy S, Sood AK (2005) Routes to spatiotemporal chaos in the rheology of nematogenic fluids. Phys Rev E 71:021707

    Google Scholar 

  • Decruppe JP, Cressely R, Makhloufi R, Cappelaere E (1995) Flow birefringence experiments showing a shear-banding structure in a CTAB solution. Coll Polym Sci 273:346–351

    CAS  Google Scholar 

  • Decruppe JP, Greffier O, Manneville S, Lerouge S (2006) Local velocity measurements in heterogeneous and time-dependent flows of a micellar solution. Phys Rev E 73:061509

    CAS  Google Scholar 

  • de Gennes PG (2007) Melt fracture of entangled polymers. Eur Phys J E 23:3–5

    Google Scholar 

  • de Gennes PG, Prost J (1993) The physics of liquid crystals, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • Denn MM (2001) Extrusion instabilities and wall slip. Annu Rev Fluid Mech 33:265–287

    Google Scholar 

  • Denniston C, Orlandini E, Yeomans JM (2001) Lattice Boltzmann simulations of liquid crystal hydrodynamics. Phys Rev E 63:56702

    CAS  Google Scholar 

  • Dhez O, Nallet F, Diat O (2001) Influence of screw dislocations on the orientation of a sheared lamellar phase. Europhys Lett 55:821–826

    CAS  Google Scholar 

  • Dhont JKG (1999) A constitutive relation describing the shear-banding transition. Phys Rev E 60:4534–4544

    CAS  Google Scholar 

  • Dhont JKG, Briels WJ (2003a) Inhomogeneous suspensions of rigid rods in flow. J Chem Phys 118:1466–1478

    CAS  Google Scholar 

  • Dhont JKG, Briels WJ (2003b) Viscoelasticity of suspensions of long, rigid rods. Colloid Surf A Physicochem Eng Asp 213:131–156

    CAS  Google Scholar 

  • Dhont JKG et al (2003) Shear-banding and microstructure of colloids in shear flow. Faraday Discuss 123:157–172

    CAS  Google Scholar 

  • Diat O, Roux D, Nallet F (1993) Effect of shear on a lyotropic lamellar phase. J Phys II 3:1427–1452 (France)

    CAS  Google Scholar 

  • Doi M (1981) Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J Poly Sci Poly Phys 19:229–243

    CAS  Google Scholar 

  • Doi M, Edwards SF (1989) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Edwards BJ, Beris AN, Grmela M, Larson RG (1990) Generalized constitutive equation for polymeric liquid-crystals. 2. Nonhomogeneous systems. J Non-Newton Fluid Mech 36:243–254

    CAS  Google Scholar 

  • Edwards BJ, Beris AN, Grmela M (1991) The dynamic behavior of liquid-crystals—a continuum description through generalized brackets. Mol Cryst Liq Cryst 201:51–86

    Google Scholar 

  • Eiser E, Molino F, Porte G, Diat O (2000a) Nonhomogeneous textures and banded flow in a soft cubic phase under shear. Phys Rev E 61:6759–6764

    CAS  Google Scholar 

  • Eiser E, Molino F, Porte G, Pithon X (2000b) Flow in micellar cubic crystals. Rheol Acta 39:201–208

    CAS  Google Scholar 

  • El-Kareh AW, Leal LG (1989) Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion. J Non-Newton Fluid Mech 33:257–287

    CAS  Google Scholar 

  • Escalante J, Macias E, Bautista F, Pérez-López J, Soltero J, Puig J, Manero O (2003) Shear-banded flow and transient rheology of cationic wormlike micellar solutions. Langmuir 19:6620–6626

    CAS  Google Scholar 

  • Fielding SM (2005) Linear instability of planar shear banded flow. Phys Rev Lett 95:134501

    CAS  Google Scholar 

  • Fielding SM (2007) Complex dynamics of shear banded flows. Soft Matter 3:1262–1279

    CAS  Google Scholar 

  • Fielding SM, Olmsted PD (2003a) Early stage kinetics in a unified model of shear-induced demixing and mechanical shear banding instabilities. Phys Rev Lett 90:224501

    CAS  Google Scholar 

  • Fielding SM, Olmsted PD (2003b) Flow phase diagrams for concentration-coupled shear banding. Eur Phys J E 11:65–83

    CAS  Google Scholar 

  • Fielding SM, Olmsted PD (2003c) Kinetics of the shear banding instability in startup flows. Phys Rev E 68:036313

    CAS  Google Scholar 

  • Fielding SM, Olmsted PD (2004) Spatiotemporal oscillations and rheochaos in a simple model of shear banding. Phys Rev Lett 92:084502

    CAS  Google Scholar 

  • Fielding SM, Olmsted PD (2006) Nonlinear dynamics of an interface between shear bands. Phys Rev Lett 96:104502

    CAS  Google Scholar 

  • Fife PC, McLeod JB (1977) The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch Rat Mech Anal 65:335–361

    Google Scholar 

  • Fischer P, Wheeler EK, Fuller GG (2002) Shear-banding structure orientated in the vorticity direction observed for equimolar micellar solution. Rheol Acta 41:35–44

    CAS  Google Scholar 

  • Forest MG, Zhou RH, Wang Q (2004) Chaotic boundaries of nematic polymers in mixed shear and extensional flows. Phys Rev Lett 93:088301

    Google Scholar 

  • Fyrillas MM, Georgiou GC, Vlassopoulos D (1999) Time-dependent plane poiseuille flow of a Johnson-Segalman fluid. J Non-Newton Fluid Mech 82:105–123

    CAS  Google Scholar 

  • Gamez-Corrales R, Berret JF, Walker LM, Oberdisse J (1999) Shear-thickening dilute surfactant solutions: equilibrium structure as studied by small-angle neutron scattering. Langmuir 15:6755–6763

    CAS  Google Scholar 

  • Ganapathy R, Sood AK (2006a) Intermittency route to rheochaos in wormlike micelles with flow-concentration coupling. Phys Rev Lett 96:108301

    Google Scholar 

  • Ganapathy R, Sood AK (2006b) Tuning rheochaos by temperature in wormlike micelles. Langmuir 22:11016–11021

    CAS  Google Scholar 

  • Ganapathy R, Rangarajan G, Sood AK (2007) Granger causality and cross recurrence plots in rheochaos. Phys Rev E 75:16211

    Google Scholar 

  • Georgiou GC, Vlassopoulos D (1998) On the stability of the simple shear flow of a Johnson–Segalman fluid. J Non-Newton Fluid Mech 75:77–97

    CAS  Google Scholar 

  • Goveas JL, Olmsted PD (2001) A minimal model for vorticity and gradient banding in complex fluids. Eur Phys J E6:79–89

    Google Scholar 

  • Goveas JL, Pine DJ (1999) A phenomenological model for shear-thickening in wormlike micelle solutions. Europhys Lett 48:706–706

    CAS  Google Scholar 

  • Grand C, Arrault J, Cates ME (1997) Slow transients and metastability in wormlike micelle rheology. J Phys II 7:1071–1086 (France)

    CAS  Google Scholar 

  • Greco F, Ball RC (1997) Shear-band formation in a non-Newtonian fluid model with a constitutive instability. J Non-Newton Fluid Mech 69:195–206

    CAS  Google Scholar 

  • Head DA, Ajdari A, and Cates ME (2002) Rheological instability in a simple shear-thickening model. Europhys Lett 57:120–126

    CAS  Google Scholar 

  • Herle V, Fischer P, Pfister B, Kohlbrecher J, Windhab EJ (2005) Structural characterization of shear banded flow in shear thickening wormlike micellar system. Langmuir 21:9051

    CAS  Google Scholar 

  • Hess S (1975) Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals. Z Naturforsch 30a:728–733

    Google Scholar 

  • Hess S (1976) Pre- and post-transitional behavior of the flow alignment and flow-induced phase transition in liquid crystals. Z Naturforsch 31a:1507

    CAS  Google Scholar 

  • Hilliou L, Vlassopoulos D (2002) Time-periodic structures and instabilities in shear-thickening polymer solutions. Ind Eng Chem Res 41:6246–6255

    CAS  Google Scholar 

  • Holmes WM, Lopez-Gonzalez MR, Callaghan PT (2003) Fluctuations in shear-banded flow seen by NMR velocimetry. Europhys Lett 64:274–280

    CAS  Google Scholar 

  • Holmes WM, Callaghan PT, Vlassopoulos D, Roovers J (2004a) Shear banding phenomena in ultrasoft colloidal glasses. J Rheol 48:1085–1102

    CAS  Google Scholar 

  • Holmes WM, Lopez-Gonzalez MR, Callaghan PT (2004b) Shear-induced constraint to amphiphile chain dynamics in wormlike micelles (vol 66, pg 132, 2004). Europhys Lett 66:464–464

    CAS  Google Scholar 

  • Hu YT, Lips A (2005) Kinetics and mecahnism of shear banding in an entangled micellar solution. J Rheol 49:1001

    CAS  Google Scholar 

  • Hu YT, Boltenhagen P, Matthys E, Pine DJ (1998a) Shear thickening in low-concentration solutions of wormlike micelles. II Slip, fracture, and stability of the shear–induced phase. J Rheol 42:1209–1226

    CAS  Google Scholar 

  • Hu YT, Boltenhagen P, Pine DJ (1998b) Shear thickening in low-concentration solutions of wormlike micelles. I Direct visualization of transient behavior and phase transitions. J Rheol 42:1185–1208

    CAS  Google Scholar 

  • Hu Y, Wilen L, Philips A, Lips A (2007) Is the constitutive relation for entangled polymers monotonic? J Rheol 51:275

    CAS  Google Scholar 

  • Imaeda T, Furukawa A, Onuki A (2004) Viscoelastic phase separation in shear flow. Phys Rev E 70:051503

    Google Scholar 

  • Inn YW, Wissbrun KF, Denn MM (2005) Effect of edge fracture on constant torque rheometry of entangled polymer solutions. Macromolecules 38:9385–9388

    CAS  Google Scholar 

  • Johnson M, Segalman D (1977) A model for viscoelastic fluid behavior which allows non-affine deformation. J Non-Newton Fluid Mech 2:255–270

    Google Scholar 

  • Jou D, Casasvazquez J, Criadosancho M (1995) Thermodynamics of polymer-solutions under flow— phase-separation and polymer degradation. Adv Polym Sci 120:207–266

    CAS  Google Scholar 

  • Kang K, Lettinga MP, Dogic Z, Dhont JKG (2006) Vorticity banding in rodlike virus suspensions. Phys Rev E 74:26307

    Google Scholar 

  • Keller SL, Boltenhagen P, Pine DJ, Zasadzinski JA (1998) Direct observation of shear-induced structures in wormlike micellar solutions by freeze-fracture electron microscopy. Phys Rev Lett 80:2725–2728

    CAS  Google Scholar 

  • Kishbaugh AJ, McHugh AJ (1993) A rheooptical study of shear-thickening and structure formation in polymer-solutions, 1. Exp Rheol Acta 32:9–24

    CAS  Google Scholar 

  • Kramer L (1981) On the relative stability of states and first-order phase transitions in systems far from equilibrium. Z Phys B 41:357–363

    Google Scholar 

  • Krug J, Lebowitz JL, Spohn H, Zhang MQ (1986) The fast rate limit of driven diffusive systems. J Stat Phys 44:535–565

    Google Scholar 

  • Kuzuu N, Doi M (1983) Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation. J Phys Soc Jpn 52:3486–3494

    CAS  Google Scholar 

  • Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworths, Boston

    Google Scholar 

  • Larson RG (1992) Instabilities in viscoelastic flows. Rheol Acta 31:213–263

    CAS  Google Scholar 

  • Le TD, Olsson U, Mortensen K, Zipfel J, Richtering W (2001) Nonionic amphiphilic bilayer structures under shear. Langmuir 17:999–1008

    CAS  Google Scholar 

  • Lee JY, Magda J, Hu H, Larson R (2002) Cone angle effects, radial pressure profile, and second normal stress difference for shear-thickening wormlike micelles. J Rheol 46:195

    CAS  Google Scholar 

  • Leon A, Bonn D, Meunier J, Al-Kahwaji A, Greffier O, Kellay H (2000) Coupling between flow and structure for a lamellar surfactant phase. Phys Rev Lett 84:1335–1338

    CAS  Google Scholar 

  • Lerouge S, Argentina M, Decruppe JP (2006) Interface instability in shear-banding flow. Phys Rev Lett 96:088301

    CAS  Google Scholar 

  • Lettinga MP, Dhont JKG (2004) Non-equilibrium phase behaviour of rod-like viruses under shear flow. J Phys Condens Matter 16:S3929–S3939

    Google Scholar 

  • Likhtman AE, Graham RS (2003) Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–Poly equation. J Non-Newton Fluid Mech 114:1

    CAS  Google Scholar 

  • Liu AJ, Fredrickson GH (1993) Free energy functionals for semi-flexible polymer solutions and blends. Macromolecules 26:2817

    CAS  Google Scholar 

  • Lopez-Gonzalez MR, Holmes WM, Callaghan PT, Photinos PJ (2004) Shear banding fluctuations and nematic order in wormlike micelles. Phys Rev Lett 93:268302

    CAS  Google Scholar 

  • Lu C-YD, Olmsted PD, Ball RC (2000) The effect of non-local stress on the determination of shear banding flow. Phys Rev Lett 84:642–645

    CAS  Google Scholar 

  • Magda JJ, Lee CS, Muller SJ, Larson RG (1993) Rheology, flow instabilities, and shear-induced diffusion in polystyrene solutions. Macromolecules 26:1696–1706

    CAS  Google Scholar 

  • Malkus DS, Nohel JS, Plohr BJ (1990) Dynamics of shear flow of a non-Newtonian fluid. J Comp Phys 87:464–487

    CAS  Google Scholar 

  • Malkus DS, Nohel JS, Plohr BJ (1991) Analysis of new phenomena in shear flow of non-Newtonian fluids. SIAM J Appl Math 51:899–929

    Google Scholar 

  • Manneville S, Becu L, Colin A (2004a) High-frequency ultrasonic speckle velocimetry in sheared complex fluids. Eur Phys J Appl Phys 28:361–373

    Google Scholar 

  • Manneville S, Salmon JB, Colin A (2004b) A spatio-temporal study of rheo-oscillations in a sheared lamellar phase using ultrasound. Eur Phys J E 13:197–212

    CAS  Google Scholar 

  • Manneville S, Colin A, Waton G, Schosseler F (2007) Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution. Phys Rev E 75:061502

    Google Scholar 

  • Marlow SW, Olmsted PD (2002) The effect of shear flow on the helfrich interaction in lyotropic lamellar systems. Eur Phys J E 8:485–497

    CAS  Google Scholar 

  • Marrucci G (1996) Dynamics of entanglements: a nonlinear model consistent with the Cox-Merz rule. J Non-Newton Fluid Mech 62:279–289

    CAS  Google Scholar 

  • Mather PT, Romo-Uribe A, Han CD, Kim SS (1997) Rheo-optical evidence of a flow-induced isotropic-nematic transition in a thermotropic liquid-crystalline polymer. Macromolecules 30:7977–7989

    CAS  Google Scholar 

  • McLeish TCB (1987) Stability of the interface between 2 dynamic phases in capillary-flow of linear polymer melts. J Poly Sci B Poly Phys 25:2253–2264

    CAS  Google Scholar 

  • McLeish T (ed) (1997) In: Proceedings of the NATO advanced study institute on theoretical challenges in the dynamics of complex fluids, Cambridge, UK, vol 339 of E: applied sciences. Kluwer, Dordrecht

    Google Scholar 

  • McLeish TCB, Ball RC (1986) A molecular approach to the spurt effect in polymer melt flow. J Poly Sci B Poly Phys 24:1735–1745

    CAS  Google Scholar 

  • Michel E, Appell J, Molino F, Kieffer J, Porte G (2001) Unstable flow and nonmonotonic flow curves of transient networks. J Rheol 45:1465–1477

    CAS  Google Scholar 

  • Milner ST (1993) Dynamical theory of concentration fluctuations in polymer-solutions under shear. Phys Rev E 48:3674–3691

    CAS  Google Scholar 

  • Milner ST, McLeish TCB, Likhtman AE (2001) Microscopic theory of convective constraint release. J Rheol 45:539–563

    CAS  Google Scholar 

  • Olmsted PD (1999) Two-state phase diagrams for complex fluids in shear flow. Europhys Lett 48:339–345

    CAS  Google Scholar 

  • Olmsted PD, Goldbart PM (1990) Theory of the non-equilibrium phase transition for nematic liquid crystals under shear flow. Phys Rev A41:4578–4581

    Google Scholar 

  • Olmsted PD, Goldbart PM (1992) Isotropic-nematic transition in shear flow: state selection, coexistence, phase transitions, and critical behavior. Phys Rev A46:4966–4993

    Google Scholar 

  • Olmsted PD, Lu C-YD (1997) Coexistence and phase separation in sheared complex fluids. Phys Rev E56:55–58

    Google Scholar 

  • Olmsted PD, Lu C-YD (1999a) Phase separation of rigid rod suspensions in shear flow. Phys Rev E60:4397–4415

    CAS  Google Scholar 

  • Olmsted PD, Lu C-YD (1999b) Phase coexistence of complex fluids in shear flow. Faraday Discuss 112:183–194

    CAS  Google Scholar 

  • Olmsted PD, Radulescu O, Lu C-YD (2000) The Johnson–Segalman model with a diffusion term in cylindrical Couette flow. J Rheol 44:257–275

    CAS  Google Scholar 

  • Panizza P, Colin A, Coulon C, Roux D (1998) A dynamic study of onion phases under shear flow: size changes. Eur Phys J B 4:65–74

    CAS  Google Scholar 

  • Pearson JRA (1994) Flow curves with a maximum. J Rheol 38:309–331

    CAS  Google Scholar 

  • Porte G, Berret JF, Harden JL (1997) Inhomogeneous flows of complex fluids: mechanical instability versus non-equilibrium phase transition. J Phys II 7:459–472 (France)

    CAS  Google Scholar 

  • Pujolle-Robic C, Noirez L (2001) Observation of shear-induced nematic–isotropic transition in side-chain liquid crystal polymers. Nature 409:167–171

    CAS  Google Scholar 

  • Pimenta P, Pashkovski E (2006) Rheology of viscoelastic mixed surfactant solutions: effect of scission on nonlinear flow and rheochaos. Langmuir 22:3980–3987

    CAS  Google Scholar 

  • Radulescu O, Olmsted PD (2000) Matched asymptotic solutions for the steady banded flow of the diffusive Johnson-Segalman model in various geometries. J Non-Newton Fluid Mech 91:141–162

    Google Scholar 

  • Radulescu O, Olmsted PD, Lu C-YD (1999) Shear-banding in reaction-diffusion models. Rheol Acta 38:606–613

    CAS  Google Scholar 

  • Radulescu O, Olmsted PD, Decruppe JP, Lerouge S, Berret JF, Porte G (2003) Time scales in shear banding of wormlike micelles. Europhys Lett 62:230–236

    CAS  Google Scholar 

  • Raynaud JS, Moucheront P, Baudez JC, Bertrand F, Guilbaud JP, Coussot P (2002) Direct determination by nuclear magnetic resonance of the thixotropic and yielding behavior of suspensions. J Rheol 46:709–732

    CAS  Google Scholar 

  • Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions—model systems for rheological research. Mol Phys 74:933–973

    CAS  Google Scholar 

  • Rienacker G, Kroger M, Hess S (2002a) Chaotic orientational behavior of a nematic liquid crystal subjected to a steady shear flow. Phys Rev E 66:040702

    Google Scholar 

  • Rienacker G, Kroger A, Hess S (2002b) Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals. Physica A 315:537–568

    Google Scholar 

  • Rossi LF, McKinley G, Cook LP (2006) Slippage and migra tion in Taylor–Couette flow of a model for dilute wormlike micellar solutions. J Non-Newton Fluid Mech 136:79

    CAS  Google Scholar 

  • Roux D, Nallet F, Diat O (1993) Rheology of lyotropic lamellar phases. Europhys Lett 24:53–58

    CAS  Google Scholar 

  • Roux DC, Berret JF, Porte G, Peuvreldisdier E, Lindner P (1995) Shear-induced orientations and textures of nematic wormlike micelles. Macromolecules 28:1681–1687

    CAS  Google Scholar 

  • Salmon JB, Colin A, Roux D (2002) Dynamical behavior of a complex fluid near an out-ofequilibrium transition: approaching simple rheological chaos. Phys Rev E 66:031505

    Google Scholar 

  • Salmon JB, Becu L, Manneville S, Colin A (2003a) Towards local rheology of emulsions under Couette flow using dynamic light scattering. Eur Phys J E 10:209–221

    CAS  Google Scholar 

  • Salmon JB, Colin A, Manneville S, Molino F (2003b) Velocity profiles in shear-banding wormlike micelles. Phys Rev Lett 90:228303

    Google Scholar 

  • Schmitt V, Lequeux F, Pousse A, Roux D (1994) Flow behavior and shear-induced transition near an isotropic-nematic transition in equilibrium polymers. Langmuir 10:955–961

    CAS  Google Scholar 

  • Schmitt V, Marques CM, Lequeux F (1995) Shear-induced phase-separation of complex fluids—the role of flow-concentration coupling. Phys Rev E 52:4009–4015

    CAS  Google Scholar 

  • Schweizer T (2007) Shear banding during nonlinear creep with a solution of monodisperse polystyrene. Rheol Acta 46:629–637

    CAS  Google Scholar 

  • See H, Doi M, Larson R (1990) The effect of steady flow-fields on the isotropic-nematic phase transition of rigid rod-like polymers. J Chem Phys 92:792–800

    Google Scholar 

  • Sood AK, Bandyopadhyay R, Basappa G (1999) Linear and nonlinear rheology of wormlike micelles. Pramana J Phys 53:223–235

    CAS  Google Scholar 

  • Spenley NA, Cates ME, McLeish TCB (1993) Nonlinear rheology of wormlike micelles. Phys Rev Lett 71:939–942

    CAS  Google Scholar 

  • Spenley NA, Yuan XF, Cates ME (1996) Nonmonotonic constitutive laws and the formation of shear-banded flows. J Phys II 6:551–571 (France)

    CAS  Google Scholar 

  • Stark E, Lubensky TC (2003) Poisson-bracket approach to the dynamics of nematic liquid crystals. Phys Rev E 67:61709

    CAS  Google Scholar 

  • Sui C, McKenna GB (2007) Instability of entangled polymers in cone and plate rheometry. Rheol Acta 46:877–888

    CAS  Google Scholar 

  • Tapadia P, Wang SQ (2006) Direct visualization of continuous simple shear in non-Newtonian polymeric fluids. Phys Rev Lett 96:016001

    Google Scholar 

  • Tapadia P, Ravindranath S, Wang SQ (2006) Banding in entangled polymer fluids under oscillatory shearing. Phys Rev Lett 96:196001

    Google Scholar 

  • van Egmond JW (1998) Shear-thickening in suspensions, associating polymers, worm-like micelles, and poor polymer solutions. Curr Opin Colloid Interface Sci 3:385–390

    Article  Google Scholar 

  • Vlassopoulos D, Hatzikiriakos SG (1995) A generalized Giesekus constitutive model with retardation time and its association to the spurt effect. J Non-Newton Fluid Mech 57:119–136

    CAS  Google Scholar 

  • Wang SQ, Drda PA, Inn YW (1996) Exploring molecular origins of sharkskin, partial slip, and slope change in flow curves of linear low density polyethylene. J Rheol 40:875–898

    CAS  Google Scholar 

  • Wang SQ, Ravindranath S, Boukany P, Olechnowicz M, Quirk RP, Halasa A, Mays J (2006) Nonquiescent relaxation in entangled polymer liquids after step shear. Phys Rev Lett 97:187801

    Google Scholar 

  • Wheeler EK, Fischer P, Fuller GG (1998) Time-periodic flow induced structures and instabilities in a viscoelastic surfactant solution. J Non-Newton Fluid Mech 75:193–208

    CAS  Google Scholar 

  • Wilkins G, Olmsted P (2006) Vorticity banding during the lamellar-to-onion transition in a lyotropic surfactant solution in shear flow. Eur Phys J E 21:133–143

    CAS  Google Scholar 

  • Wilson HJ, Fielding SM (2006) Linear instability of planar shear banded flow of both diffusive and non-diffusive Johnson-Segalman fluids. J Non-Newton Fluid Mech 138:181–196

    CAS  Google Scholar 

  • Wunenburger AS, Colin A, Colin T, Roux D (2000) Undulation instability under shear: a model to explain the different orientations of a lamellar phase under shear? Eur Phys J E 2:277–283

    CAS  Google Scholar 

  • Wunenburger AS, Colin A, Leng J, Arneodo A, Roux D (2001) Oscillating viscosity in a lyotropic lamellar phase under shear flow. Phys Rev Lett 86:1374–1377

    CAS  Google Scholar 

  • Yerushalmi J, Katz S, Shinnar R (1970) The stability of steady shear flows of some viscoelastic fluids. Chem Eng Sci 25:1891–1902

    CAS  Google Scholar 

  • Yuan XF (1999) Dynamics of a mechanical interface in shear-banded flow. Europhys Lett 46:542–548

    CAS  Google Scholar 

  • Yuan XF, Jupp L (2002) Interplay of flow-induced phase separations and rheological behavior of complex fluids in shearbanding flow. Europhys Lett 60:691–697

    CAS  Google Scholar 

  • Zilman AG, Granek R (1999) Undulation instability for lamellar phases under shear: a mechanism for onion formation? Eur Phys J B 11:593–608

    CAS  Google Scholar 

  • Zipfel J, Nettesheim F, Lindner P, Le TD, Olsson U, Richtering W (2001) Cylindrical intermediates in a shear-induced lamellar-tovesicle transition. Europhys Lett 53:335–341

    CAS  Google Scholar 

Download references

Acknowledgements

I thank David Lu, Simon Marlow, Ovidiu Radulescu, Georgina Wilkins, James Adams, and especially Suzanne Fielding for enjoyable and fruitful collaborations and a host of the experimental shear banding community for continual inspiration; much of this work was supported by the Engineering and Physical Sciences Research Council (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Olmsted.

Appendix

Appendix

Models that exhibit shear banding

JS model

In the JS model, the total stress is assumed to be divided as in Eq. 3b, and the viscoelastic stress \(\boldsymbol{\Sigma}\) is assumed to obey (Johnson and Segalman 1977; Olmsted et al. 2000)

$$\stackrel{\blacklozenge}{\boldsymbol{\Sigma}}+\frac{1}{\tau} \boldsymbol{\Sigma} = 2 \frac{\mu}{\tau}\boldsymbol{D} +{\mathcal D} \nabla^2 \boldsymbol{\Sigma},$$
(A1)

where

$$\stackrel{\blacklozenge}{\boldsymbol{\Sigma}} = (\partial_t + \mathbf{v}\cdot \nabla) \boldsymbol{\Sigma}+(\boldsymbol{\Omega}\boldsymbol{\Sigma} - \boldsymbol{\Sigma} \boldsymbol{\Omega})-a(\boldsymbol{D}\boldsymbol{\Sigma} + \boldsymbol{\Sigma}\boldsymbol{D})$$
(A2)

is the Gordon–Schowalter derivative (Larson 1988), τ is a relaxation time, the “polymer” viscosity μ determines a modulus G = μ/τ, and \(\boldsymbol{\Omega} =\tfrac12\left[ \nabla \mathbf{v} - (\nabla \mathbf{v})^T \right]\). The total stress comprises the viscoelastic stress of the DJS model and a Newtonian contribution, according to Eq. 3b, and the viscosity ratio ε ≡ η/μ controls the balance between the two stresses. The “slip parameter” a, which describes nonaffine stretch of the dumbbell with respect to the extension of the flow, allows for a nonmonotonic constitutive curve for 0 < |a| < 1 and ε < 1/8.

The “diffusion” term \(\mathcal D\nabla^2\boldsymbol{\Sigma}\) describes nonlocal relaxation of the viscoelastic stress and is necessary to describe strongly inhomogeneous flow profiles (Olmsted et al. 2000). Because of this term, the steady shear banding state obeys a spatial differential equation, which must be solved subject to boundary conditions specified at the walls of the flow cell. The solvability condition for a stationary interface leads to a unique total shear stress plateau for imposed average shear rates in the nonmonotonic portion of the constitutive curve (Lu et al. 2000). The characteristic width ℓ of the interface between shear bands is given by \(\ell=\sqrt{{\mathcal D}\tau}\).

Yuan has proposed an alternative form for a diffusion term, which is similar to the “curvature viscosity” term proposed by Dhont (1999). In this version, spatial gradients in the local shear rate contribute to stress relaxation (Yuan 1999)

$$\stackrel{\blacklozenge}{\boldsymbol{\Sigma}}+\frac{1}{\tau} \boldsymbol{\Sigma} = 2 \frac{\mu}{\tau}\boldsymbol{D} -{\mathcal D} \nabla^2 \boldsymbol{D}.$$
(A3)

The DJS model has been coupled to concentration degrees of freedom in several different guises (Cook and Rossi 2004; Fielding and Olmsted 2003a, b, c; Rossi 2006; Yuan and Jupp 2002).

Liquid crystal hydrodynamics

A suspension of long rigid rods undergoes an isotropic-to-nematic phase transition at a sufficiently high concentration. Flow can induce the nematic phase, and the dynamical equations of motion support shear banding. In this case, the microstructural stress is a function of the nematic order parameter tensor \(\boldsymbol{Q}=\langle\boldsymbol{\hat{u}}\boldsymbol{\hat{u}}\rangle-\tfrac13\boldsymbol{I}\), where the unit vector \(\boldsymbol{\hat{u}}\) denotes the orientation of a rigid rod. There have been many essentially equivalent independent derivations of the hydrodynamic equations of motion, both phenomenologically and from a molecular point of view. Perhaps the most precise derivation is the recent one of Stark and Lubensky (2003), based on microscopic Poisson Brackets. The general form is as follows (Doi 1981; Edwards et al. 1990; Hess 1975; Kuzuu and Doi 1983; Olmsted and Goldbart 1990):

$$\stackrel{\bullet}{\boldsymbol{Q}} = \frac{1}{\zeta_{\scriptscriptstyle Q}}\,\stackrel{\circ}{\boldsymbol{H}} (\boldsymbol{Q}) + \boldsymbol{\Lambda}\boldsymbol{:}\boldsymbol{D},$$
(A4)

where

$$\stackrel{\bullet}{\boldsymbol{Q}} = (\partial_t + \mathbf{v}\cdot \nabla) \boldsymbol{Q}+(\boldsymbol{\Omega} \boldsymbol{Q} - \boldsymbol{Q}\boldsymbol{\Omega})$$
(A5)

is the corotational derivative and \(\tau_{\scriptscriptstyle Q}\) is a relaxation coefficient. The reactive fourth rank tensor \(\boldsymbol{\Lambda}\) describes nondissipative evolution of the order parameter tensor. The molecular field that drives relaxation to equilibrium is

$$\boldsymbol{H} = -\frac{\delta{\cal F\/}}{\delta \boldsymbol{Q}},$$
(A6)

where the free energy functional \(\cal F\) includes homogeneous and inhomogeneous (Frank elastic) terms. The stress has a viscous part \(\boldsymbol{T}^v\), a symmetric elastic part \(\boldsymbol{T}^{el}\), and an antisymmetric part \(\boldsymbol{T}^{a}\), as follows:

$$\boldsymbol{T} = \boldsymbol{T}^v + \boldsymbol{T}^{el} + \boldsymbol{T}^{a} - p\boldsymbol{I}$$
(A7)
$$\boldsymbol{T}^v =\boldsymbol{\eta}\boldsymbol{:}\boldsymbol{D}$$
(A8)
$$\boldsymbol{T}^a =\boldsymbol{HQ} -\boldsymbol{QH}$$
(A9)
$$\boldsymbol{T}^{el} = -\boldsymbol{\Lambda}\boldsymbol{:}\,\stackrel{\circ}{\boldsymbol{H}} - \boldsymbol{\nabla}Q_{\alpha\beta}\cdot {\delta{\cal F\/}\over\delta\boldsymbol{\nabla}Q_{\alpha\beta}},$$
(A10)

where \(\boldsymbol{\eta}\) is a fourth rank viscosity tensor that generally depends on \(\boldsymbol{Q}\), and the term \(-\boldsymbol{\Lambda}\boldsymbol{:}\,\,\stackrel{\circ}{\boldsymbol{H}}\) ensures Onsager reciprocity. Recall that \(\,\stackrel{\circ}{\boldsymbol{H}}\) is the traceless-symmetric version of \(\boldsymbol{H}\). The elastic stress is equivalent to the elastic stress due to Frank elasticity (de Gennes and Prost 1993), generalized to a description in terms of the nematic order parameter \(\boldsymbol{Q}\) rather than the nematic director. The free energy \({\cal F}(\boldsymbol{Q})\) describes the isotropic–nematic phase transition, and the coupling to flow \(\boldsymbol{\Lambda}\boldsymbol{:}\boldsymbol{D}\) in Eq. A4 perturbs the isotropic state and induces a phase transition. The choice of \(\boldsymbol{\Lambda}\) is somewhat a matter of taste and has been derived from a microscopic picture by Doi et al. and by Stark and Lubensky (Doi 1981; Edwards et al. 1990; Hess 1975; Kuzuu and Doi 1983; Olmsted and Goldbart 1990; Stark and Lubensky 2003).

The simple choice \(\boldsymbol{\Lambda}\boldsymbol{:}\boldsymbol{D} =\nu\boldsymbol{D}\) was chosen in an early study of the effects of flow on the isotropic–nematic phase transition (Olmsted and Goldbart 1990, 1992). From a microscopic model, Stark and Lubensky derived the following:

$$\boldsymbol{\Lambda}\boldsymbol{:}\boldsymbol{D} = (\boldsymbol{D}\boldsymbol{Q} + \boldsymbol{Q}\boldsymbol{D}) + \frac{I}{3\Delta I}\boldsymbol{D}$$
(A11)
$$\;\;\;- 2\left[\frac{1}{3}\boldsymbol{I} + \left(1 + \frac{I}{\Delta I}\right)\boldsymbol{Q} \right]\,\hbox{\rm Tr}(\boldsymbol{Q}\boldsymbol{D}),$$
(A12)

where I is the principal moment of inertia and ΔI the difference between the two moments of inertia of uniaxial rods. In the Doi model \(\boldsymbol{\Lambda}\) is defined by

$$\boldsymbol{\Lambda}\boldsymbol{:}\boldsymbol{D} = (\boldsymbol{D}\boldsymbol{Q} + \boldsymbol{Q}\boldsymbol{D}) + \frac23\boldsymbol{D} - 2\left(\boldsymbol{Q}+\frac13\boldsymbol{I}\right)\,\hbox{\rm Tr}(\boldsymbol{Q}\boldsymbol{D}).$$
(A13)

This model was coupled to concentration to explore the effects of shear flow on the isotropic–nematic phase transition in suspensions (Olmsted and Lu 1997, 1999a). In the Beris–Edwards model, the same choice is made with an additional prefactor ξ that can be related to the aspect ratio of the rigid rods (Edwards et al. 1990; Kuzuu and Doi 1983) and is essentially the same as the slip parameter a that appears in the Gordon–Schowalter derivative; this was used by Denniston and Yeomans in a lattice Boltzmann study (Denniston et al. 2001). Hess and Kröger used the choice (Rienacker et al. 2002a)

$$\boldsymbol{\Lambda}\boldsymbol{:}\boldsymbol{D} = a \left[\boldsymbol{D}\boldsymbol{Q} + \boldsymbol{Q}\boldsymbol{D} - \frac{2}{3}\boldsymbol{I}{\rm Tr}\left({\boldsymbol{QD}}\right)\right] + \alpha\boldsymbol{D}$$
(A14)

in their study of chaotic dynamics in nematic liquid crystals, where α was related to a ratio of Leslie–Erickson coefficients. A similar choice was made in another study of chaotic dynamics (Das et al. 2005). Other microscopically derived constitutive equations include those of Dhont and Briels (2003a, b) and of Calderer et al. (2004); the former is notable for its incorporation of inhomogeneous flows.

Rolie–Poly model

The original DE theory for entangled polymer dynamics predicted a nonmonotonic constitutive curve and an instability that could lead to shear banding (Doi and Edwards 1989; McLeish 1987; McLeish and Ball 1986). This early pioneering model neglected an important physical source of stress under flow, which has been recently understood and modeled: the enhanced release of polymer entanglements due to convection (Marrucci 1996). This increases the polymer stress and, for sufficiently strong convected constraint release (CCR), can "cure" the DE instability. CCR and tube stretching were incorporated in Milner et al. (2001) to describe polymer melts and wormlike micelles and later simplified to the following differential version, called the Rolie–Poly model (Likhtman and Graham 2003):

$$\stackrel{\blacktriangledown}{\boldsymbol{\Sigma}} + \frac{1}{\tau}\boldsymbol{\Sigma} = 2 G \boldsymbol{D} - \frac{2}{3} \boldsymbol{\Sigma}:\nabla\mathbf{v} \left[ \boldsymbol {I} + (1+\beta) \frac{\boldsymbol{\Sigma}}{G} \right] + {\mathcal D} \nabla^2 \boldsymbol{\Sigma}.$$
(A15)

The CCR parameter β (0 ≤ β ≤ 1) is proportional to the frequency of the release of polymer entanglement constraints due to convection by the flow. Likhtman and Graham (2003) used β = 1 to model a well-entangled polymer melt without a constitutive instability. For small enough β, a constitutive instability results, akin to the original DE instability (Adams et al. 2007). The stress diffusion included above did not appear in the original formulation. In the version of the Rolie–Poly model used in Eq. A15, the tube length is assumed to be relaxed (“nonstretching”).

Interestingly, the limit β = 0 corresponds to a differential version of the Cates model (Cates 1990) of wormlike micellar solutions. This constitutive equation can be obtained by rewriting the original integral equation as a differential equation and then using a decoupling approximation to remove fourth-order moments (Adams et al. 2007; McLeish 1997).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmsted, P.D. Perspectives on shear banding in complex fluids. Rheol Acta 47, 283–300 (2008). https://doi.org/10.1007/s00397-008-0260-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0260-9

Keywords

Navigation