Skip to main content

Advertisement

Log in

A review on wall slip in high solid dispersions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

High solid dispersions are soft materials made of colloidal or non-colloidal particles dispersed at high volume fractions in a liquid matrix. They include hard sphere glasses, colloidal pastes, concentrated emulsions, foams, and vesicles. These materials are prone to exhibit different kinds of flow heterogeneities: shear banding, wall slip, and fracture. While wall slip is often considered as a nuisance by experimentalists, it appears to be a fundamental component to the way that high solid dispersions respond to mechanical deformation. Moreover, the ability of soft materials to slip onto surfaces allows them to move readily and efficiently in many natural phenomena and industrial processes. This review surveys recent developments and current research in the field. Topics like wall slip detection and control, microscopic modeling for rigid and soft particles materials, and the relation between wall slip and other flow heterogeneities are discussed. We also identify important open issues for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams S, Frith WJ, Stokes JR (2004) Influence of particle modulus on the rheological properties of agar microgel suspensions. J Rheol 48:1195–1213

    Article  Google Scholar 

  • Adams JM, Fielding SM, Olmsted PD (2008) The interplay between boundary conditions and flow geometries in shear banding: hysteresis, band configurations, and surface transitions. J Non-Newtonian Fluid Mech 151:101–118

  • Ahonguio F, Laurent Jossic L, Magnin A (2016) Influence of slip on the flow of a yield stress fluid around a flat plate. AICHE J 62:1356–1363

    Article  Google Scholar 

  • Ahuja A, Singh A (2009) Slip velocity of concentrated suspensions in Couette flow. J Rheol 53:1461–1485

    Article  Google Scholar 

  • Aktas S, Kalyon DM, Marín-Santibáñez BM, Pérez-González J (2014) Shear viscosity and wall slip behavior of a viscoplastic hydrogel. J Rheol 58:513–535

    Article  Google Scholar 

  • Allain C, Cloitre M, Wafra M (1995) Aggregation and sedimentation in colloidal suspensions. Phys Rev Lett 74:1478–1481

    Article  Google Scholar 

  • Amin MHG, Hanlon AD, Hall LD, Marriott C, Ablett S, Wang W, Frith WJ (2003) A versatile single-screw-extruder system designed for magnetic resonance imaging measurements. Meas Sci Technol 14:1760–1768

    Article  Google Scholar 

  • Aral BK, Kalyon DM (1994) Effects of temperature and surface roughness on time-dependent developmetn of wall slip in steady torsional flow of concentrated suspensions. J Rheol 38:957–972

    Article  Google Scholar 

  • Atalıka K, Keunings R (2004) On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear. J Non-Newton Fluid 122:107–116

    Article  Google Scholar 

  • Ballesta P, Petekidis G, Isa L, Poon WCK, Besseling R (2008) Slip and flow of hard-sphere colloidal glasses. Phys Rev Lett 101:258201

    Article  Google Scholar 

  • Ballesta P, Petekidis G, Isa L, Poon WCK, Besseling R (2012) Wall slip and flow of concentrated hard-sphere colloidal suspensions. J Rheo 56:1005–1037

    Article  Google Scholar 

  • Ballesta P, Koumakis N, Besseling R, Poon WCK, Petekidis G (2013) Slip of gels in colloid–polymer mixtures under shear. Soft Matter 9:3237–3245

    Article  Google Scholar 

  • Baravian C, Lalante A, Parker A (2002) Vane rheometry with a large, finite gap. Appl Rheol 12:81–87

    Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non-Newtonian Fluid Mech 56:221–251

    Article  Google Scholar 

  • Barnes HA (1999) The yield stress—a review or ‘παντα ρο’ everything flows? J Non-Newtonian Fluid Mech 81:133–178

    Article  Google Scholar 

  • Barnes HA, Nguyen QD (2001) Rotating vane rheometry—a review. J Non Newtonian Fluid Mech 98:1–14

    Article  Google Scholar 

  • Barnes EC, Wilson DI, Johns ML (2006) Velocity profiling inside a ram extruder using magnetic resonance (MR) techniques. Chem Eng Sci 61:1357–1367

    Article  Google Scholar 

  • Bécu L, Grondin P, Colin A, Manneville S (2004) How does a concentrated emulsion flow? Yielding, local rheology, and wall slip. Colloids and Surfaces A: Physicochem Eng Aspects 263:146–152

    Article  Google Scholar 

  • Bécu L, Manneville S, Colin A (2006) Yielding and flow in adhesive and non-adhesive concentrated emulsions. Phys Rev Lett 96:138302

    Article  Google Scholar 

  • Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) Wall slip and yielding in pasty materials. J Rheol 47:1211–1226

    Article  Google Scholar 

  • Besseling R, Isa L, Weeks ER, Poon WCK (2009) Quantitative imaging of colloidal flows. Adv Colloid Interf Sci 146:1–17

    Article  Google Scholar 

  • Besseling R, Isa L, Ballesta P, Petekidis G, Cates ME, Poon WCK (2010) Shear banding and flow-concentration coupling in colloidal glasses. Phys Rev Lett 105:268301

    Article  Google Scholar 

  • Bingham EC (1922) Fluidity and plasticity. McGraw-Hill, New York

    Google Scholar 

  • Birinci E, Kalyon DM (2006) Development of extrudate distortions in poly(dimethyl siloxane) and its suspensions with rigid particles. J Rheol 50:313–326

    Article  Google Scholar 

  • Blondin E, Doubliez L (2002) Particle image velocimetry of a wet aqueous foam with an underlying liquid film. Exp Fluids 32:294–301

    Article  Google Scholar 

  • Bocquet L, Colin A, Ajdari A (2009) Kinetic theory of plastic flow in soft glassy materials. Phys Rev Lett 103:036001

    Article  Google Scholar 

  • Bonn D, Denn MM (2009) Yield stress fluids slowly yield to analysis. Science 324:1401–1402

    Article  Google Scholar 

  • Bonn D, Paredes J, Denn MM, Berthier L, Divoux T, Manneville S (2015) Yield stress materials in soft condensed matter. arXiv:1502.05281v1

  • Bonnecaze RT, Cloitre M (2010) Micromechanics of soft particle glasses. Adv Polym Sci 236:117–161

    Article  Google Scholar 

  • Boukany PE, Wang S-Q (2008) Use of particle-tracking velocimetry and flow birefringence to study nonlinear flow behavior of entangled wormlike micellar solution: from wall slip, bulk disentanglement to chain scission. Macromolecules 41:1455–1464

    Article  Google Scholar 

  • Boukany PE, Hemminger O, Wang SQ, Lee LJ (2010) Molecular imaging of slip in entangled DNA solution. Phys Rev Lett 105:027802

    Article  Google Scholar 

  • Bouzigues CI, Tabeling P, Bocquet L (2008) Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys Rev Lett 101:114503

    Article  Google Scholar 

  • Bower C, Gallegos C, Mackley MR (1999) The rheological and microstructural characterisation of the non-linear flow behaviour of concentrated oil-in-water emulsions. Rheol Acta 38:145–159

    Article  Google Scholar 

  • Bretherton FP (1961) The motion of long bubbles in tubes. J Fluid Mech 10:166–188

    Article  Google Scholar 

  • Buscall R (2010) Letter to the editor: wall slip in dispersion rheometry. J Rheol 54:1177–1183

    Article  Google Scholar 

  • Buscall R, McGowan JI, Morton-Jones AJ (1993) The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip. J Rheol 37:621–641

    Article  Google Scholar 

  • Callaghan PT (1999) Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids. Rep Prog Phys 62:599–670

    Article  Google Scholar 

  • Callaghan PT (2006) Rheo-NMR and velocity imaging. Curr Opin Colloid Interface Sci 11:13–18

    Article  Google Scholar 

  • Callaghan PT (2008) Rheo NMR and shear banding. Rheol Acta 47:243–255

    Article  Google Scholar 

  • Cantat I (2013) Liquid meniscus friction on a wet plate: bubbles, lamellae, and foams. Phys Fluids 25:031303

    Article  Google Scholar 

  • Cantat I, Kern N, Delannay R (2004) Dissipation in foam flowing through narrow channels. Europhys Lett 65:726–732

    Article  Google Scholar 

  • Chen L, Duan Y, Zhao C, Yang L (2009) Rheological behavior and wall slip of concentrated coal water slurry in pipe flows. Chem Eng Process 48:1241–1248

    Article  Google Scholar 

  • Chen DTN, Wen Q, Janmey PA, Crocker JC, Yodh AG (2010) Rheology of soft materials. Annu Rev Condens Matter Phys 1:301–322

    Article  Google Scholar 

  • Cloitre M, Vlassopoulos D (2011) Block copolymers in external fields: rheology, flow-induced phenomena and applications. In: Kontopoulou M (ed) Applied polymer rheology: polymeric fluids with industrial applications. Wiley, Hoboken

    Google Scholar 

  • Cloitre M, Borrega R, Monti F, Leibler L (2003) Structure and flow of polyelectrolyte microgels: from suspensions to glasses. C R Physique 4:221–230

    Article  Google Scholar 

  • Cohen I, Davidovitch B, Schofield AB, Brenner MP, Weitz DA (2006) Slip, yield, and bands in colloidal crystals under oscillatory shear. Phys Rev Lett PRL 97:215502

    Article  Google Scholar 

  • Cohen-Addad S, Höhler R (2014) Rheology of foams and highly concentrated emulsions. Curr Opin Colloid Interface Sci 19:536–548

    Article  Google Scholar 

  • Condre J-M, Ligoure C, Cipelletti L (2007) The role of solid friction in the sedimentation of strongly attractive colloidal gels. J Stat Mech P02010

  • Coussot P (2014) Yield stress fluid flows: a review of experimental data. J Non-Newtonian Fluid Mech 211:31–49

    Article  Google Scholar 

  • Coussot P, Nguyen QD, Huynh HT, Bonn D (2002) Avalanche behavior in yield stress fluids. Phys Rev Lett 88:175501

    Article  Google Scholar 

  • Coussot P, Tocquer L, Lanos C, Ovarlez G (2009) Macroscopic vs. local rheology of yield stress fluids. J Non-Newton Fluid 158:85–90

    Article  Google Scholar 

  • Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  Google Scholar 

  • Cullen PJ, O’Donnell CP, Houska M (2003) Rotational rheometry using complex geometries—a review. J Texture Stud 34:1–20

    Article  Google Scholar 

  • Damianou Y, Philippou M, Kaoullas G, Georgiou GC (2014) Cessation of viscoplastic Poiseuille flow with wall slip. J Non-Newton Fluid 203:24–37

    Article  Google Scholar 

  • Davies GA, Stokes JR (2008) Thin film and high shear rheology of multiphase complex fluids. J Non-Newtonian Fluid Mech 148:73–87

  • Denkov ND, Subramanian V, Gurovich D, Lips A (2005) Wall slip and viscous dissipation in sheared foams: effect of surface mobility. Colloids and Surfaces A: Physicochem Eng Aspects 263:129–145

    Article  Google Scholar 

  • Denkov ND, Tcholakova S, Golemanov K, Subramanian V, Lips A (2006) Foam–wall friction: effect of air volume fraction for tangentially immobile bubble surface. Colloids and Surfaces A: Physicochem Eng Aspects 282(283):329–347

    Article  Google Scholar 

  • Denkov ND, Tcholakova S, Golemanov K, Ananthpadmanabhan KP, Lips A (2009) The role of surfactant type and bubble surface mobility in foam rheology. Soft Matter 5:3389–3408

    Article  Google Scholar 

  • Denn MM (2001) Extrusion instabilities and wall slip. Annu Rev Fluid Mech 33:265–287

    Article  Google Scholar 

  • Derakhshandeh B, Vlassopoulos D, Hatzikiriakos SG (2012) Thixotropy, yielding and ultrasonic Doppler velocimetry in pulp fibre suspensions. Rheol Acta 51:201–214

    Article  Google Scholar 

  • Derzsi L, Filippi D, Mistura G, Pierno M, Lulli M, Sbragaglia M, Bernaschi M, Garstecki P (2016) Fluidization and wall slip of soft-glassy materials by controlled surface roughness. arXiv:1611.01980v1

  • Divoux T, Tamarii D, Barentin C, Manneville S (2010) Transient shear banding in a simple yield stress fluid. Phys Rev Lett 104:208301

    Article  Google Scholar 

  • Divoux T, Barentin C, Manneville S (2011a) From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids. Soft Matter 7:8409–8418

    Article  Google Scholar 

  • Divoux T, Barentin C, Manneville S (2011b) Stress overshoot in a simple yield stress fluid: an extensive study combining rheology and velocimetry. Soft Matter 7:9335

    Article  Google Scholar 

  • Divoux T, Tamarii D, Barentin C, Teitel S, Manneville S (2012) Yielding dynamics of a Herschel–Bulkley fluid: a critical-like fluidization behaviour. Soft Matter 8:4151–4164

    Article  Google Scholar 

  • Divoux T, Lapeyre V, Ravaine V, Manneville S (2015) Wall slip across the jamming transition of soft thermoresponsive particles. Phys Rev E 92:060301

    Article  Google Scholar 

  • Divoux T, Fardin MA, Manneville S, Lerouge S (2016) Shear banding of complex fluids. Annu Rev Fluid Mech 48:81–103

    Article  Google Scholar 

  • Dzuy NQ, Boger DV (1983) Yield stress measurement for concentrated suspensions. J Rheol 27:321–349

    Article  Google Scholar 

  • Dzuy NQ, Boger DV (1985) Direct yield stress measurement with the vane method. J Rheol 29:335–347

    Article  Google Scholar 

  • Egger H, McGrath KM (2006) Estimating depletion layer thickness in colloidal systems: correlation with oil-in-water emulsion composition. Colloids and Surfaces A: Physicochem Eng Aspects 275:107–113

    Article  Google Scholar 

  • Eichenbaum GM, Kisetr PF, Simon SA, Needham D (1998) pH and ion-triggered volume response of anionic hydrogel microspheres. Macromolecules 31:5084–5093

    Article  Google Scholar 

  • Emile J, Salonen A, Dollet B, Saint-Jalmes A (2009) A systematic and quantitative study of the link between foam slipping and interfacial viscoelasticity. Langmuir 25:13412–13418

    Article  Google Scholar 

  • Emile J, Casanova F, Loas EO (2012) Swelling of a foam lamella in a confined channel. Soft Matter 8:7223–7227

    Article  Google Scholar 

  • Ewoldt R, Clasen C, Hosoi AE, McKinley GH (2007) Rheological fingerprinting of gastropod pedal mucus and bioinspired complex fluids for adhesive locomotion. Soft Matter 3:634–643

    Article  Google Scholar 

  • Feindel KW, Callaghan PT (2010) Anomalous shear banding: multidimensional dynamics under fluctuating slip conditions. Rheol Acta 49:1003–1013

    Article  Google Scholar 

  • Fielding SM (2014) Shear banding in soft glassy materials. Rep Prog Phys 77:102601

    Article  Google Scholar 

  • Franco JM, Gallegos C, Barnes HA (1998) On slip effects in steady-state flow measurements of oil-in-water food emulsions. J Food Eng 36:89–102

    Article  Google Scholar 

  • Frank M, Anderson D, Weeks ER, Morris J (2003) Particle migration in pressure-driven flow of a Brownian suspension. J Fluid Mech 493:363–378

    Article  Google Scholar 

  • Fujii S, Richtering W (2006) Size and viscoelasticity of spatially confined multilamellar vesicles. Eur Phys J E 19:139–148

    Article  Google Scholar 

  • Gallegos C, Franco JM (1999) Rheology of food, cosmetics and pharmaceuticals. Curr Opin Colloid Interface Sci 4:288–293

    Article  Google Scholar 

  • Gallot T, Perge C, Grenard V, Fardin M-A, Taberlet N, Manneville S (2012) Ultrafast ultrasonic imaging coupled to rheometry: principle and illustration. Rev Sci Instrum 84:045107

    Article  Google Scholar 

  • Geraud B, Bocquet L, Barentin C (2013) Confined flows of a polymer microgel. Eur. Phys. J. E 36:30

    Article  Google Scholar 

  • Germain D, Le Merrer M (2016) Bubbles slipping along a crenelated wall. EPL 115:64005

    Article  Google Scholar 

  • Ghosh S, van den Ende D, Mugele F, Duits MHG (2016) Apparent wall-slip of colloidal hard-sphere suspensions in microchannel flow. Colloid Surface A 491:50–56

    Article  Google Scholar 

  • Gibaud T, Barentin C, Manneville S (2008) Influence of boundary conditions on yielding in a soft glassy material. Phys Rev Lett 101:258302

    Article  Google Scholar 

  • Gibaud T, Taberlet N, Barentin C, Manneville S (2009) Shear-induced fragmentation of laponite suspensions. Soft Matter 5:3026–3037

    Article  Google Scholar 

  • Gibaud T, Frelat D, Manneville S (2010) Heterogeneous yielding dynamics in a colloidal gel. Soft Matter 6:3482–3488

    Article  Google Scholar 

  • Gibbs SJ, James KL, Hall LD, Haycock DE, Frith WJ, Ablett S (1996) Rheometry and detection of apparent wall slip for Poiseuille flow of polymer solutions and particulate dispersions by nuclear magnetic resonance velocimetry. J Rheol 40:425–440

    Article  Google Scholar 

  • Gladden LF, Sederman AJ (2013) Recent advances in flow MRI. J Magn Reson 229:2–11

    Article  Google Scholar 

  • Goddard JD (2003) Material instability in complex fluids. Annu Rev Fluid Mech 35:113–133

    Article  Google Scholar 

  • Golemanov K, Denkov ND, Tcholakova S, Vethamuthu M, Lips A (2008) Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir 24:9956–9961

    Article  Google Scholar 

  • Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L (2008) Spatial cooperativity in soft glassy flows. Nature 454:84–87

    Article  Google Scholar 

  • Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L (2010) How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity. Soft Matter 6:2668–2678

    Article  Google Scholar 

  • Graham MD (1995) Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows. J Rheol 39:697–712

    Article  Google Scholar 

  • Granick S, Zhu Y, Lee H (2003) Slippery questions about complex fluids flowing past solids. Nat Mater 2:221–227

    Article  Google Scholar 

  • Grenard V, Divoux T, Taberlet N, Manneville S (2014) Timescales in creep and yielding of attractive gels. Soft Matter 2014:1555–1571

    Article  Google Scholar 

  • Gulmus SA, Yilmazer U (2005) Effect of volume fraction and particle size on wall slip in flow of concentrated suspensions. J Appl Polym Sci 98:439–448

    Article  Google Scholar 

  • Gulmus SA, Yilmazer U (2007) Effect of the surface roughness and construction material on wall slip in the flow of concentrated suspensions. J Appl Polym Sci 103:3341–3347

    Article  Google Scholar 

  • Haavisto S, Salmela J, Jäsberg SAT, Sorvari A, Karppinen A, Koponen A (2015) Rheological characterization of microfibrillated cellulose suspension using optical coherence tomography. TAPPI J 142:91–304

    Google Scholar 

  • Habibi M, Dinkgreve PJ, Denn MM, Bonn D (2016) Normal stress measurements in foams and emulsions in the presence of slip. J Non Newtonian Fluid Mech. doi:10.1016/j.jnnfm.2016.06.008

    Google Scholar 

  • Hartman Kok PJA, Kazarian SG, Briscoe BJ, Lawrence CJ (2001) Near-wall depletion in a flowing colloidal suspension. J Rheol 42:481–493

    Google Scholar 

  • Hartman Kok PJA, Kazarian SG, Briscoe BJ, Lawrence CJ (2004) Effects of particle size on near-wall depletion in mono-dispersed colloidal suspensions. J Colloid Interface Sci 280:511–517

    Article  Google Scholar 

  • Hatzikiriakos SG (2015) Slip mechanisms in complex fluid flows. Soft Matter 11:7851–7856

    Article  Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1991) Wall slip of molten high density polyethylene. I Sliding plate rheometer studies J Rheol 35:497–523

    Google Scholar 

  • van Hecke M (2010) Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J Phys Condens Matter 22:033101

    Article  Google Scholar 

  • Hollingsworth KG, Johns ML (2006) Rheo-nuclear magnetic resonance of emulsion systems. J Rheol 48:787–803

    Article  Google Scholar 

  • Holmes WM, Callaghan PT, Vlassopoulos D, Roovers J (2004) Shear banding phenomena in ultrasoft colloidal glasses. J Rheol 48:1085–1102

    Article  Google Scholar 

  • Huang P, Guasto JS, Breuer KS (2006) Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry. J Fluid Mech 566:447–464

    Article  Google Scholar 

  • Hyun KH, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GK (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753

    Article  Google Scholar 

  • Ianni F, Di Leonardo R, Gentilini S, Ruocco G (2007) Shear banding phenomena in a laponite suspension. Phys Rev E Stat Nonlinear Soft Matter Phys 77:031406

    Article  Google Scholar 

  • Ireland PM, Jameson GJ (2009) Foam slip on surfaces of intermediate or low wettability. Chem Eng Sci 64:3859–3867

    Article  Google Scholar 

  • Isa L, Besseling R, Poon WCK (2007) Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions. Phys Rev Lett 98:198305

    Article  Google Scholar 

  • Jalaal M, Balmforth NJ, Stoeber B (2015) Slip of spreading viscoplastic droplets. Langmuir 31:12071–12075

  • Jana SC, Kapoor B, Acrivos A (1995) Apparent wall slip velocity coefficients in concentrated suspensions of non-colloidal particles. J Rheol 39:1123–1132

    Article  Google Scholar 

  • Jaradat S, Harvey M, Waigh TA (2012) Shear-banding in polyacrylamide solutions revealed via optical coherence tomography velocimetry. Soft Matter 8:11677–11186

    Article  Google Scholar 

  • Jarny S, Roussel N, Rodts S, Bertrand F, Le Roy R, Coussot P (2005) Rheological behavior of cement pastes from MRI velocimetry. Cem Concr Res 35:1873–1881

    Article  Google Scholar 

  • Jesinghausen S, Weiffen R, Schmid (2016) Direct measurements of wall slip and slip layer thickness of non-Brownian hard sphere suspensions in rectangular channel flows. Exp Fluids 57:153

    Article  Google Scholar 

  • Jofore BR, Erni P, Vleminckx G, Moldenaers P, Clasen C (2015) Rheology of microgels in single particle confinement. Rheol Acta 54:581–600

    Article  Google Scholar 

  • Jop P, Mansard V, Chaudhuri P, Bocquet L, Colin A (2012) Microscale rheology of a soft glassy material close to yielding. Phys Rev Lett 108:148301

    Article  Google Scholar 

  • Joseph DD (1997) Lubricated pipelining. Powder Technol 97:211–215

    Article  Google Scholar 

  • Joseph DD, Chen KP, Renardy YY (1997) Core annular flows. Ann Rev Fluid Mech 29:65–90

    Article  Google Scholar 

  • Kalyon DM (2003) Comments on “A new method of processing capillary viscometry data in the presence of wall slip”. J Rheol 47:1087–1088

    Article  Google Scholar 

  • Kalyon DM (2005) Apparent slip and viscoplasticity of concentrated suspensions. J Rheol 49:621–640

    Article  Google Scholar 

  • Kalyon DM (2010) An analytical model for steady coextrusion of viscoplastic fluids in thin slit dies with wall slip. Polym Eng Sci 50:652–664

    Article  Google Scholar 

  • Kalyon DM, Yaras P, Aral B, Yilmazer U (1993) Rheological behavior of a concentrated suspension: a solid rocket fuel stimulant. J Rheol 37:35–63

    Article  Google Scholar 

  • Kalyon DM, Lawal A, Yazici R, Yaras P, Railkar S (1999) Mathematical modeling and experimental studies of twin screw extrusion of filled polymers. Polym Eng Sci 39:1139–1151

    Article  Google Scholar 

  • Kang K, Kriegs H, Dhont JKG, Danko O, Marakis J, Vlassopoulos D (2017) Non-uniform flow in soft glasses of colloidal rods. Phys Rev Fluids, accepted

  • Kao SV, Nielsen LE, Hill CT (1975) Rheology of concentrated suspensions of spheres I. Effect of the liquid-solid interface. J Colloid Interface Sci 53:358–366

    Article  Google Scholar 

  • Keentok M, Milthorpe JF, O’Donovan E (1985) On the shearing zone around rotating vanes in plastic liquids: theory and experiment. J Non-Newtonian Fluid Mech 17:23–35

    Article  Google Scholar 

  • Khan SA, Schnepper CA, Armstrong RC (1988) Foam rheology: III. Measurement of shear flow properties. J Rheol 32:69–92

    Article  Google Scholar 

  • Klein CO, Hans W, Spiess HW, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40:4250–4259

    Article  Google Scholar 

  • Korhonen M, Mohtaschemi M, PuistoA IX, Alava MJ (2015) Apparent wall slip in non-Brownian hard-sphere suspensions. Eur Phys J E 38:46

    Article  Google Scholar 

  • Kraynik A (1988) Foam flows. Ann Rev Fluid Mech 20:325–357

    Article  Google Scholar 

  • Lam YC, Wang ZY, Chen X, Joshi SC (2007) Wall slip of concentrated suspension melts in capillary flows. Powder Technol 177:162–169

    Article  Google Scholar 

  • Lauga E, Brenner M, Stone H (2007) Microfluidics: the no-slip boundary condition. Springer handbook of experimental fluid mechanics. Springer-Verlag, Berlin Heidelberg, pp 1219–1240

    Book  Google Scholar 

  • Lawal A, Kalyon DM (1994a) Non-isothermal model of single screw extrusion of generalized Newtonian fluids. Numer Heat Transfer 26:103–121

    Article  Google Scholar 

  • Lawal A, Kalyon DM (1994b) Single screw extrusion of viscoplastic fluids subject to different slip coefficients at screw and barrel surfaces. Polym Eng Sci 34:1471–1479

    Article  Google Scholar 

  • Lawal A, Kalyon DM (1998) Squeezing flow of viscoplastic fluids subject to wall slip. Polym Eng Sci 38:1793–1804

    Article  Google Scholar 

  • Le Merrer M, Lespiat R, Höhler R, Cohen-Addad S (2015) Linear and non-linear wall friction of wet foams. Soft Matter 11:368–381

    Article  Google Scholar 

  • Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181:415–439

    Article  Google Scholar 

  • Lester DR, Buscall R, Stickland AD, Scales PJ (2014) Wall adhesion and constitutive modeling of strong colloidal gels. J Rheol 58:1247–1276

    Article  Google Scholar 

  • Lettinga P, Manneville S (2009) Competition between shear banding and wall slip in wormlike micelles. Phys Rev Lett 103:248302

    Article  Google Scholar 

  • Li Z, D’eramo L, Monti F, Vayssade A-L, Chollet B, Bresson B, Tran Y, Cloitre M, Tabeling P (2014) Slip length measurements using μPIV and TIRF-based velocimetry. Isr J Chem 54:1589–1601

    Article  Google Scholar 

  • Li Z, D’eramo L, Lee C, Monti F, Yonger M, Tabeling P, Chollet B, Bresson B, Tran Y (2015) Near-wall nanovelocimetry based on total internal reflection fluorescence with continuous tracking. J Fluid Mech 766:147–171

    Article  Google Scholar 

  • Lidon P, Villa L, Manneville S (2016) Power-law creep and residual stresses in a carbopol microgel. Rheol Acta. doi:10.1007/s00397-016-0961-4

    Google Scholar 

  • Loppinet B, Dhont JKG, Lang P (2012) Near-field laser doppler velocimetry measures near-wall velocities. Eur Phys J E 35:62

  • Luu L-H, Forterre Y (2009) Drop impact of yield-stress fluids. J Fluid Mech 632:301–327

    Article  Google Scholar 

  • Ma L, Barbosa-Cánovas GV (1995) Rheological characterization of mayonnaise. Part I: slippage at different oil and xanthan gum concentrations. J Food Eng 25:397–408

    Article  Google Scholar 

  • Magnin A, Piau JM (1987) Shear rheometry of fluids with a yield stress. J Non-Newtonian Fluid Mech 23:91–106

    Article  Google Scholar 

  • Magnin A, Piau JM (1990) Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel. J Non-Newtonian Fluid Mech 36:85–108

    Article  Google Scholar 

  • Maillard M, Boujlel J, Coussot P (2015) Flow characteristics around a plate withdrawn from a bath of yield stress fluid. J Non-Newtonian Fluid 220:33–43

    Article  Google Scholar 

  • Mair RW, Callaghan PT (1997) Shear flow of wormlike micelles in pipe and cylindrical Couette geometries as studied by nuclear magnetic resonance microscopy. J Rheol 41:901–924

    Article  Google Scholar 

  • Manneville S (2008) Recent experimental probes of shear banding. Rheol Acta 47:301–318

    Article  Google Scholar 

  • Manneville S, Bécu L, Colin A (2004) High-frequency ultrasonic speckle velocimetry in sheared complex fluids. Eur Phys J Appl Phys 28:361–373

    Article  Google Scholar 

  • Manneville S, Colin A, Waton G, Schosseler F (2007) Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution. Phys Rev E Stat Nonlinear Soft Matter Phys 75:061502

    Article  Google Scholar 

  • Mannheimer RJ (1972) Anomalous rheological characteristics of a high-internal-phase-ratio emulsion. J Colloid Interface Science 40:370–382

    Article  Google Scholar 

  • Mansard V, Colin A (2013) Local and non local rheology of concentrated particles. Soft Matter 8:4025–4043

    Article  Google Scholar 

  • Mansard V, Bocquet L, Colin A (2014) Boundary conditions for soft glassy flows: slippage and surface fluidization. Soft Matter 10:6984–6989

    Article  Google Scholar 

  • Martoïa F, Perge C, Dumont PJJ, Orgéas L, Fardin MA, Manneville S, Belgacem MN (2015) Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. Soft Matter 11:4742–4755

    Article  Google Scholar 

  • Marze S, Langevin D, Saint-Jalmes A (2008) Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering. J Rheol 52:1091–1111

    Article  Google Scholar 

  • Mason TG, Bibette J, Weitz DA (1996) Yielding and flow of monodisperse emulsions. J Colloid Interface Sci 79:439–448

    Article  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004a) Slip and flow of soft particle pastes. Phys Rev Lett 92:198302

    Article  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004b) Slip and flow in pastes of soft particles: direct observation and rheology. J Rheol 48:1295–1320

    Article  Google Scholar 

  • Meeten GH (2004a) Squeeze flow of soft solids between rough surfaces. Rheol Acta 43:6–16

    Article  Google Scholar 

  • Meeten GH (2004b) Effect of plate roughness in squeeze flow rheometry. J Non-Newton Fluid 124:51–60

    Article  Google Scholar 

  • Meeten GH, Sherwood JD (1992) Vane technique for shear-sensitive and wall-slipping fluids. In: Moldenaers P, Keunings R (eds) Proceedings of the 11th International Congress on Rheology: Theoretical and Applied Rheology. Elsevier, Amsterdam, pp 935–937

    Chapter  Google Scholar 

  • Métivier C, Rharbi Y, Magnin A, Bou Abboud A (2012) Stick-slip control of the Carbopol microgels on polymethyl methacrylate transparent smooth walls. Soft Matter 8:7365–7367

    Article  Google Scholar 

  • Meyer S, Richtering W (2005) Influence of polymerization conditions on the structure of temperature-sensitive poly (N-isopropylacrylamide) microgels. Macromolecules 38:1517–1519

    Article  Google Scholar 

  • Miller E, Rothstein JP (2007) Transient evolution of shear banding wormlike micellar solutions. J Non-Newton Fluid 143:22–37

    Article  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Article  Google Scholar 

  • Navier CLMH (1827) Sur les lois du mouvement des fluides. Mem Acad R Sci Inst Fr 6:389–440

    Google Scholar 

  • Nazari B, Kumar V, Bousfield DW, Toivakka M (2016) Rheology of cellulose nanofibers suspensions: boundary driven flow. J Rheol 60:1151–1159

    Article  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Frédéric Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439

    Article  Google Scholar 

  • Nickerson C, Kornfield J (2005) A novel “cleat” geometry for suppressing wall slip. J Rheol 49:865–874

    Article  Google Scholar 

  • Olmsted PD (2008) Perspectives on shear banding in complex fluids (2008). Rheol Acta 47:283–300

    Article  Google Scholar 

  • Ortega-Avila JB, Pérez-González J, Marín-Santibáñez BM, Rodríguez-González F, Aktas S, Malik M, Kalyon DM (2016) Axial annular flow of a viscoplastic microgel with wall slip. J Rheol 60:503–515

    Article  Google Scholar 

  • Ovarlez G, Cohen-Addad KK, Goyon J, Coussot P (2013) On the existence of a simple yield stress fluid behavior. J Non-Newton Fluid 193:68–79

    Article  Google Scholar 

  • Ozkan S, Gillece TW, Senak L, Moore DJ (2012) Characterization of yield stress and slip behaviour of skin/hair care gels using steady flow and LAOS measurements and their correlation with sensorial attributes. Int J Cosmetic Sci 34:193–201

    Article  Google Scholar 

  • Pal R (1998) Rheology of liquid membranes. Ind Eng Chem Res 37:2052–2058

    Article  Google Scholar 

  • Pal R (2000) Slippage during the flow of emulsion in rheometers. Colloid Surface A 162:55–66

    Article  Google Scholar 

  • Paredes J, Shahidzadeh N, Bonn D (2015) Wall slip and fluidity in emulsion flow. Phys Rev E Stat Nonlinear Soft Matter Phys 92:042313

    Article  Google Scholar 

  • Patarin J, Galliard H, Magnin A, Goldschmidt B (2014) Vane and plateeplate rheometry of cheeses under oscillations and large strains: a comparative study and experimental conditions analysis. Int Dairy J 38:24–30

    Article  Google Scholar 

  • Pérez-González J, López-Durán JJ, Marín-Santibáñez BM, Rodríguez-González F (2012) Rheo-PIV of a yield-stress fluid in a capillary with slip at the wall. Rheol Acta 51:937–946

    Article  Google Scholar 

  • Persello J, Magnin A, Chang J, Piau JM, Cabane B (1994) Flow of colloidal aqueous silica dispersions. J Rheol 38:1845–1870

    Article  Google Scholar 

  • Philippou M, Kountouriotis Z, Georgiou GC (2016) Viscoplastic flow development in tubes and channels with wall slip. J Non-Newton Fluid 234:69–81

    Article  Google Scholar 

  • Piau JM (2007) Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges: meso- and macroscopic properties, constitutive equations and scaling laws. J Non-Newton Fluid 144:1–29

    Article  Google Scholar 

  • Pit R, Hervet H, Léger L (1999) Friction and slip of a simple liquid at a solid surface. Tribol Lett 7:147–152

    Article  Google Scholar 

  • Plucinski J, Gupta RK, Chakrabarti S (1998) Wall slip of mayonnaises in viscometers. Rheol Acta 37:256–269

    Article  Google Scholar 

  • Poumaere A, Moyers-González M, Castelain C, Burghelea T (2014) Unsteady laminar flows of a Carbopol gel in the presence of wall slip. J Non-Newton Fluid 205:28–40

    Article  Google Scholar 

  • Princen HM (1985) Rheology of foams and highly concentrated emulsions. II. Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions. J Colloid Interface Sci 105:150–171

    Article  Google Scholar 

  • Rabideau BD, Moucheront P, Bertrand F, Rodts S, Roussel N, Lanos C, Coussot P (2010) The extrusion of a model yield stress fluid imaged by MRI velocimetry. J Non-Newton Fluid 165:394–408

    Article  Google Scholar 

  • Ragouilliaux A, Herzhaft B, Bertrand F, Coussot P (2006) Flow instability and shear localization in a drilling mud. Rheol Acta 46:261–271

    Article  Google Scholar 

  • Raynaud JS, Moucheront P, Baudez JC, Bertrand F, Guilbaud JP, Coussot P (2002) Direct determination by nuclear magnetic resonance of the thixotropic and yielding behavior of suspensions. J Rheol 46:709–732

    Article  Google Scholar 

  • Reimers MJ, Dealy JM (1996) Sliding plate rheometer studies of concentrated polystyrene solutions: large amplitude oscillatory shear of a very high molecular weight polymer in diethyl phthalate. J Rheol 40:167–186

    Article  Google Scholar 

  • Roberts GP, Barnes HA (2001) New measurements of the flow-curves for Carbopol dispersions without slip artefacts. Rheol Acta 50:499–503

    Article  Google Scholar 

  • Rofe CJ, de Vargas L, Perez-González J, Lambert RK, Callaghan PT (1996) Nuclear magnetic resonance imaging of apparent slip effects in xanthan solutions. J Rheol 40:1115–1128

    Article  Google Scholar 

  • Roman S, Merlo A, Duru P, Risso F, Lorthois S (2016) Going beyond 20 μm-sized channels for studying red blood cell phase separation in microfluidic bifurcations. Biomicrofluidics 10:034103

    Article  Google Scholar 

  • Ross-Murphy SB (1995) Structure-property relationships in food biopolymer gels and solutions. J Rheol 39:1451–1463

    Article  Google Scholar 

  • Russell WB, Grant MC (2000) Distinguishing between dynamic yielding and wall slip in a weakly flocculated colloidal dispersion. Colloid Surface 161:271–282

    Article  Google Scholar 

  • Saïdi A, Martin C, Magnin A (2011) Effects of surface properties on the impact process of a yield stress fluid drop. Exp Fluids 51:211–224

    Article  Google Scholar 

  • Salmon J-B, Manneville S, Colin A, Pouligny B (2003a) An optical fiber based interferometer to measure velocity profiles in sheared complex fluids. Eur Phys J AP 22:143–154

    Article  Google Scholar 

  • Salmon J-B, Bécu L, Manneville S, Colin A (2003b) Towards local rheology of emulsions under Couette flow using dynamic light scattering. Eur Phys J E 10:209–223

    Article  Google Scholar 

  • Sanchez-Reyes J, Archer LA (2003) Interfacial slip violations in polymer solutions: role of microscale surface roughness. Langmuir 19:3304–3312

    Article  Google Scholar 

  • Saunders BR, Crowther HM, Vincent B (1997) Poly(methyl methacrylate)-co-(methacrylic acid) microgel particles: swelling control using pH, cononsolvency and osmotic deswelling. Macromolecules 30:482–487

    Article  Google Scholar 

  • Schall P, van Hecke M (2010) Shear bands in matter with granularity. Annu Rev Fluid Mech 42:67–88

    Article  Google Scholar 

  • Schmatko T, Hervet H, Leger L (2005) Friction and slip at simple fluid-solid interfaces: the roles of the molecular shape and the solid-liquid interaction. Phys Rev Lett 94:244501

    Article  Google Scholar 

  • Semwogerere D, Morris JF, Weeks ER (2007) Development of particle migration in pressure-driven flow of a Brownian suspension. J Fluid Mech 581:437–451

    Article  Google Scholar 

  • Seth J, Cloitre M, Bonnecaze RT (2008) Influence of short-range forces on wall-slip in microgel pastes. J Rheol 52:1241–1268

    Article  Google Scholar 

  • Seth JR, Mohan L, Locatelli-Champagne C, Cloitre M, Bonnecaze RT (2011) A micromechanical model to predict the flow of soft particle glasses. Nat Mater 10:838–843

    Article  Google Scholar 

  • Seth J, Locatelli-Champagne C, Monti F, Bonnecaze RT, Cloitre M (2012) How do soft particle glasses yield and flow near solid surfaces. Soft Matter 8:140–148

    Article  Google Scholar 

  • Shewan HM, Stokes JS, Cloitre M (2017) Particlewall tribology of slippery hydrogel particle suspensions. Soft Matter. doi:10.1039/C6SM01775D

  • Smay JE, Cesarano J III, Lewis JA (2002) Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18:5429–5437

    Article  Google Scholar 

  • Smith MI (2015) Fracture of jammed colloidal suspensions. Sci Rep 5:14175

    Article  Google Scholar 

  • Sochi T (2011) Slip at fluid-solid interface. Polym Rev 51:309–340

    Article  Google Scholar 

  • Solomon BR, Khalil KS, Varanasi KK (2014) Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30:10970–10976

    Article  Google Scholar 

  • Soltani F, Yilmazer U (1998) Slip velocity and slip layer thickness in flow of concentrated suspensions. J Appl Polym Sci 70:515–522

    Article  Google Scholar 

  • Stickland AD, Kumar A, Kusuma TE, Scales PJ, Tindley A, Biggs S, Buscall R (2015) The effect of premature wall yield on creep testing of strongly flocculated suspensions. Rheol Acta 54:337–352

    Article  Google Scholar 

  • Stokes JR, Frith WJ (2008) Rheology of gelling and yielding soft matter systems. Soft Matter 4:1133–1140

    Article  Google Scholar 

  • Stokes JR, Boehm MW, Baier SK (2013) Oral processing, texture and mouthfeel: from rheology to tribology and beyond. Curr Opin Colloid Interface Sci 18:349–359

    Article  Google Scholar 

  • Tabuteau H, Baudez JC, Bertrand F, Coussot P (2004) Mechanical characteristics and origin of wall slip in pasty biosolids. Rheol Acta 43:168–174

    Article  Google Scholar 

  • Tang HS, Kalyon DM (2004) Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers. Rheol Acta 43:80–88

    Article  Google Scholar 

  • Tang HS, Kalyon DM (2008) Time-dependent tube flow of compressible suspensions subject to pressure dependent wall slip: ramifications on development of flow instabilities. J Rheol 52:1069–1090

    Article  Google Scholar 

  • Terriac E, Etrillard J, Cantat I (2006) Viscous force exerted on a foam at a solid boundary: influence of the liquid fraction and of the bubble size. Europhys Lett 74:909–915

    Article  Google Scholar 

  • Tisné F, Doubliez L, Aloui F (2004) Determination of the slip layer thickness for a wet foam flow. Colloid Surface A 246:21–29

    Article  Google Scholar 

  • Tsitsilianis C, Iliopoulos I (2002) Telechelic polyelectrolytes in aqueous media. Macromolecules 2002:3662–3667

    Article  Google Scholar 

  • Vayssade A-L, Lee C, Terriac E, Monti F, Cloitre M, Tabeling P (2014) Dynamical role of slip heterogeneities in confined flows. Phys Rev E Stat Nonlinear Soft Matter Phys 89:052309

    Article  Google Scholar 

  • Vermant J, Solomon MJ (2005) Flow-induced structure in colloidal suspensions. J Phys Condens Matter 17:R187–R216

    Article  Google Scholar 

  • Vlassopoulos D, Cloitre M (2014) Tunable rheology of dense soft deformable colloids, suspensions. Curr Opin Colloid Interface Sci 19:561–574

    Article  Google Scholar 

  • Vlassopoulos D, Fytas G (2010) From polymers to colloids: engineering the dynamic properties of hairy particles. Adv Polym Sci 236:1–54

    Article  Google Scholar 

  • Walls HJ, Caines SB, Sanchez AM, Khan SA (2003) Yield stress and wall slip phenomena in colloidal silica gels. J Rheol 47:847–867

    Article  Google Scholar 

  • Wassenius H, Callaghan PT (2005) NMR velocimetry studies of the steady-shear rheology of a concentrated hard-sphere colloidal system. Eur Phys J E 18:69–84

    Article  Google Scholar 

  • Wein O, Tovchigrechko VV (1992) Rotational viscometry under presence of apparent wall slip. J Rheol 36:821–844

    Article  Google Scholar 

  • Westerberg LG, Lundström TS, Höglund E, Lugt PM (2010) Investigation of grease flow in a rectangular channel including wall slip effects using microparticle image velocimetry. Tribol T 53:600–609

    Article  Google Scholar 

  • Whitcomb PJ, Macosko CW (1978) Rheology of xanthan gum. J Rheol 22:493–505

    Article  Google Scholar 

  • Wilhelm M, Maring D, Spiess H-W (1998) Fourier-transform rheology. Rheol Acta 37:399–405

    Article  Google Scholar 

  • Wilson DI, Rough SL (2006) Exploiting the curious characteristics of dense solid–liquid pastes. Chem Eng Sci 61:4147–4154

    Article  Google Scholar 

  • Wolff K, Marenduzzo D, Cates ME (2012) Cytoplasmic streaming in plant cells: the role of wall slip. J R Soc Interface 9:1398–1408

    Article  Google Scholar 

  • Wyss H, Fernandez de Las Nieves A, Mattson J, Weitz DA (2011) Microgel suspensions: fundamentals and applications. Wiley-VCH, Verlag

    Google Scholar 

  • Xu C, Fieβ M, Willenbacher N (2017) Impact of wall slip on screen printing of front-side silver pastes for silicon solar cells. IEEE J Photovolt 7:129–135

  • Yeow YL, Lee HL, Melvani AJ, Mifsud GC (2003) A new method of processing capillary viscometry data in the presence of wall slip. J Rheol 47:337–348

    Article  Google Scholar 

  • Yilmazer U, Kalyon DM (1989) Slip effects in capillary and parallel disk torsional flows of highly filled suspensions. J Rheol 33:1197–1212

    Article  Google Scholar 

  • Yoshimura A, Prud’homme RK (1988) Wall slip corrections for Couette and parallel disk viscometers. J Rheol 32:53–67

    Article  Google Scholar 

  • Zahirovic S, Lubansky A, Yeow YL, Boger DV (2009) Obtaining the steady shear rheological properties and apparent wall slip data of a water-in-oil emulsion from gap-dependent parallel plate viscometry data. Rheol Acta 48:221–229

    Article  Google Scholar 

  • Zhu L, Sun N, Papadopoulos K, De Kee D (2001) A slotted plate device for measuring static yield stress. J Rheol 45:1105–1122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Cloitre.

Additional information

Special issue to celebrate the centennial anniversary of the seminal Bingham paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cloitre, M., Bonnecaze, R.T. A review on wall slip in high solid dispersions. Rheol Acta 56, 283–305 (2017). https://doi.org/10.1007/s00397-017-1002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-017-1002-7

Keywords

Navigation