Skip to main content
Log in

Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

alkali-washed nanofibrillated cellulose (NFC) samples, obtained from hardwood kraft pulp, with different amounts of retained xylan were prepared to study the influence of xylan on the water-retention properties of NFC suspensions. In this study, NFC was produced using an oxoammonium-catalyzed oxidation reaction that converts the cellulosic substrate to a more highly oxidized material via the action of the nitroxide radical species 2,2,6,6-tetramethylpiperidine-1-oxyl. Reduction of the xylan content in NFC was achieved by cold alkali extraction of kraft pulp. The pulps were then oxidized to a set charge under constant chemical conditions, and the reaction time was determined. The xylan content of the feed pulp was found to have a large negative influence on the oxidation rate of the pulp, as the oxidation time shortened when xylan was removed, from 220 min (for 25.2 % xylan content) to 28 min (for 7.3 % xylan content). Following fibrillation by homogenization, the swelling of the NFC was determined by a two-point solute exclusion method. The distribution of hemicellulose over the fibril surface was observed by atomic force microscopy. Xylan was found to be distributed unevenly over the surface, and its presence increased the water immobilized within flocs of NFC, i.e., so-called network swelling. The swelling of the NFC had a large impact on its rheology and dewatering. Comparison of the morphological and swelling properties of the suspensions with their rheological and dynamic dewatering behavior showed that reducing the xylan content in NFC results in a weaker gel structure of the nanocellulose suspension. The results indicate that most of the water is held by the swollen structure by means of xylan particles trapped within the hemicellulose layer covering the fibril surface. Samples with high xylan content had high shear modulus and viscosity and were difficult to dewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier J (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686

    Article  CAS  Google Scholar 

  • Anelli PL, Biffi C, Montanari F, Quici S (1987) Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions. J Org Chem 52(12):2559–2562

    Article  Google Scholar 

  • Araki J, Wada M, Kuga S (2000) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17(1):21–27

    Article  Google Scholar 

  • Ayol A, Dentel S, Filibeli A (2010) Rheological characterization of sludges during belt filtration dewatering using an immobilization cell. J Environ Eng 136(9):992–999

    Article  CAS  Google Scholar 

  • Barnes HA (2007) The “yield stress myth?” paper - 21 years. Appl Rheol 17(4):43110–44250

    Google Scholar 

  • Barnes HA, Ngyen QD (2001) Rotating vane rheometry-a review. J Non Newtonian Fluid Mech 98(1):1–14

    Article  CAS  Google Scholar 

  • Bennington CPJ, Kerekes RJ, Grace JR (1990) The yield stress of fibre suspensions. Can J Chem Eng 68:748–757

    Article  CAS  Google Scholar 

  • Besseling R, Isa L, Ballesta P, Petekidis G, Cates M, Poon W (2010) Shear banding and flow-concentration coupling in colloidal glasses. Phys Rev Lett 105(26):268–301

    Article  Google Scholar 

  • Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27(1–4):49–66

    Article  CAS  Google Scholar 

  • Bulota M, Vesterinen A, Hughes M, Seppälä J (2013) Mechanical behavior, structure, and reinforcement processes of TEMPO-oxidized cellulose reinforced poly(lactic) acid. Polym Compos 34(2):173–179

    Article  CAS  Google Scholar 

  • Buscall R, Mills P, Stewart R, Sutton D, White L, Yates G (1987) The rheology of strongly-flocculated suspensions. J Non Newtonian Fluid Mech 24(2):183–202

    Article  CAS  Google Scholar 

  • Chen W, Li Q, Wang Y, Yi X, Zeng J, Yu H, Liu Y, Li J (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7(1):154–161

    Article  CAS  Google Scholar 

  • Cheng DC (1986) Yield stress: a time-dependent property and how to measure it. Rheol Acta 25(5):542–554

    Article  CAS  Google Scholar 

  • Damani R, Powell RL, Hagen N (1993) Viscoelastic characterization of medium consistency pulp suspensions. Can J Chem Eng 71(5):676–684

    Article  CAS  Google Scholar 

  • de Nooy AEJ, Besemer AC, van Bekkum H (1995) Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Tetrahedron 51(29):8023–8032

    Article  Google Scholar 

  • Deka A, Dey N (2013) Rheological studies of two component high build epoxy and polyurethane based high performance coatings. J Coat Technol Res 10(3):305–315

    Article  CAS  Google Scholar 

  • Derakhshandeh B, Kerekes RJ, Hatzikiriakos SG, Bennington CPJ (2011) Rheology of pulp fibre suspensions: a critical review. Chem Eng Sci 66(15):3460–3470

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Puisto A, Gane P, Nieminen K, Alava M, Paltakari J, Maloney T (2013a) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20(6):2847–2861

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Puisto A, Paltakari J, Alava M, Maloney T (2013b) The influence of shear on the dewatering of high consistency nanofibrillated cellulose furnishes. Cellulose 20(4):1853–1864

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Nieminen K, Gane P, Maloney T, Sixta H, Paltakari J (2014) Deriving a process viscosity for complex particulate nanofibrillar cellulose gel-containing suspensions. Appl Rheol 24:35616–35625

    Google Scholar 

  • Divoux T, Barentin C, Manneville S (2011) From stress-induced fluidization processes to Herschel–Bulkley behaviour in simple yield stress fluids. Soft Matter 7(18):8409–8418

    Article  CAS  Google Scholar 

  • Divoux T, Grenard V, Manneville S (2013) Rheological hysteresis in soft glassy materials. Phys Rev Lett 110(1):8409–8418

    Article  Google Scholar 

  • Duchesne I, Hult E, Molin U, Daniel G, Iversen T, Lennholm H (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8(2):103–111

    Article  CAS  Google Scholar 

  • Dullaert K, Mewis J (2006) A structural kinetics model for thixotropy. J Non Newtonian Fluid Mech 139(1):21–30

    Article  CAS  Google Scholar 

  • Fall AB, Lindström SB, Sundman O, Ödberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27(18):11332–11338

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165

    Article  Google Scholar 

  • Fukuzumi H, Tanaka R, Saito T, Isogai A (2014) Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition. Cellulose 21(3):1553–1559

    Article  CAS  Google Scholar 

  • Grönqvist S, Hakala TK, Kamppuri T, Vehviläinen M, Hänninen T, Liitiä T, Maloney T, Suurnäkki A (2014) Fibre porosity development of dissolving pulp during mechanical and enzymatic processing. Cellulose 21(5):3667–3676

    Article  Google Scholar 

  • Hatakeyama T, Inui Y, Iijima M, Hatakeyama H (2013) Bound water restrained by nanocellulose fibres. J Therm Anal Calorim 113(3):1019–1025

    Article  CAS  Google Scholar 

  • Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81(12):6379–6380

    Article  Google Scholar 

  • Horvath AE, Lindström T (2007) The influence of colloidal interactions on fiber network strength. J Colloid Interface Sci 309(2):511–517

    Article  CAS  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270

    Article  CAS  Google Scholar 

  • Iotti M, Gregersen O, Weiby MoeS, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145

    Article  CAS  Google Scholar 

  • Ishii D, Saito T, Isogai A (2011) Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12(3):548–550

    Article  CAS  Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5(3):153–164

    Article  CAS  Google Scholar 

  • Isogai T, Saito T, Isogai A (2010) TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber. Biomacromolecules 11(6):1593–1599

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12(3):831–836

    Article  CAS  Google Scholar 

  • Jäder J, Järnstrom L (2003) The influence of thickener addition on filter cake formation during dewatering of mineral suspensions. Appl Rheol 13(3):125–131

    Google Scholar 

  • Jiang F, Hsieh Y (2014) Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing. J Mater Chem A 2(2):350–359

    Article  CAS  Google Scholar 

  • Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19(6):1807–1819

    Article  CAS  Google Scholar 

  • Kavanagh GM, Ross-Murphy SB (1998) Rheological characterisation of polymer gels. Prog Polym Sci 23(2):533–562

    Article  CAS  Google Scholar 

  • Kitaoka T, Isogai A, Onabe F (1999) Chemical modification of pulp fibers by TEMPO-mediated oxidation. Nord Pulp Pap Res J 14(4):279–284

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14(4):1160–1165

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433

    Article  CAS  Google Scholar 

  • Laudone G, Matthews G, Gane P (2006) Effect of latex volumetric concentration on void structure, particle packing, and effective particle size distribution in a pigmented paper coating layer. Ind Eng Chem Res 45(6):1918–1923

    Article  CAS  Google Scholar 

  • Läuger J, Wollny K, Huck S (2002) Direct strain oscillation: a new oscillatory method enabling measurements at very small shear stresses and strains. Rheol Acta 41(4):356–361

    Article  Google Scholar 

  • Lee K, Bismarck A (2012) Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid. Cellulose 19(3):891–900

    Article  CAS  Google Scholar 

  • Lindström T, Carlsson G (1982) The effect of chemical environment on fiber swelling. Svensk Papperstindning-Nordisk Cellulosa 85(3):14–20

    Google Scholar 

  • Littunen K, Hippi U, Saarinen T, Seppälä J (2013) Network formation of nanofibrillated cellulose in solution blended poly (methyl methacrylate) composites. Carbohydr Polym 91(1):183–190

    Article  CAS  Google Scholar 

  • Lowys M, Desbrieres J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15(1):25–32

    Article  CAS  Google Scholar 

  • Maloney TC (2015) Network swelling of TEMPO-oxidized nanocellulose. Holzforschung 69(2):207–213

    Article  CAS  Google Scholar 

  • Manninen M, Nieminen K, Maloney TC (2013) The swelling and pore structure of microfibrillated cellulose. In: 15 the Fundamental research syposium, conference proceedings. Cambridge, UK, pp 725–738

  • Meng Q, Li H, Fu S, Lucia LA (2014) The non-trivial role of native xylans on the preparation of TEMPO-oxidized cellulose nanofibrils. React Funct Polym 85:142–150

    Article  CAS  Google Scholar 

  • Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interface Sci 147:214–227

    Article  Google Scholar 

  • Moan M, Aubry T, Bossard F (2003) Nonlinear behavior of very concentrated suspensions of plate-like kaolin particles in shear flow. J Rheol 47(6):1493–1504

    Article  CAS  Google Scholar 

  • Mohtaschemi M, Dimic-Misic K, Puisto A, Korhonen M, Maloney T, Paltakari J, Alava M (2014) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21(3):1305–1312

    Article  CAS  Google Scholar 

  • Møller PC, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283

    Article  Google Scholar 

  • Naderi A, Lindström T, Pettersson T (2014) The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21(4):2357–2368

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Pignon F (2015) Concentration effect of TEMPO-oxidized nanofibrillated cellulose aqueous suspensions on the flow instabilities and small-angle X-ray scattering structural characterization. Cellulose 22(4):2197–2210

    Article  CAS  Google Scholar 

  • Nguyen Q, Boger D (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47–88

    Article  Google Scholar 

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11(6):1696–1700

    Article  CAS  Google Scholar 

  • Orelma H, Filpponen I, Johansson L, Österberg M, Rojas O, Laine J (2012) Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases 7(1):61–73

    CAS  Google Scholar 

  • Ovarlez G, Rodts S, Chateau X, Coussot P (2009) Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta 48(8):831–844

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  • Pönni R, Pääkkönen T, Nuopponen M, Pere J, Vuorinen T (2014) Alkali treatment of birch kraft pulp to enhance its TEMPO catalyzed oxidation with hypochlorite. Cellulose 21(4):2859–2869

    Article  Google Scholar 

  • Puisto A, Illa X, Mohtaschemi M, Alava M (2012a) Modeling the viscosity and aggregation of suspensions of highly anisotropic nanoparticles. Eur Phys J E 35(1):1–7

    Article  Google Scholar 

  • Puisto A, Illa X, Mohtaschemi M, Alava M (2012b) Modeling the rheology of nanocellulose suspensions. Nord Pulp Pap Res J 27(2):277–281

    Article  CAS  Google Scholar 

  • Richmond F, Co A, Bousfield D (2012) The coating of nanofibrillated cellulose onto paper using flooded and metered size press methods. New Orleans 12PaperCon. Papers/12PAP18 aspx

  • Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19(3):647–659

    Article  CAS  Google Scholar 

  • Saito T (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr Polym 61(4):414–419

    Article  CAS  Google Scholar 

  • Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65(4):435–440

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599

    Article  CAS  Google Scholar 

  • Semmelhack MF, Chou CS, Cortes DA (1983) Nitroxyl-mediated electrooxidation of alcohols to aldehydes and ketones. J Am Chem Soc 105(13):4492–4494

    Article  CAS  Google Scholar 

  • Semmelhack MF, Schmid CR, Cortes DA, Chou CS (1984) Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion. J Am Chem Soc 106(11):3374–3376

    Article  CAS  Google Scholar 

  • Shih WY, Shih WH, Aksay IA (1999) Elastic and yield behavior of strongly flocculated colloids. J Am Ceram Soc 82(3):616–624

    Article  CAS  Google Scholar 

  • Siró I (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618 NREL Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden. http://www.nrel.gov/biomass/pdfs/42618.pdf

  • Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51(3):228–234

    Article  CAS  Google Scholar 

  • Tenhunen T, Peresin MS, Penttilä PA, Pere J, Serimaa R, Tammelin T (2014) Significance of xylan on the stability and water interactions of cellulosic nanofibrils. React Funct Polym 85:157–166

    Article  CAS  Google Scholar 

  • Van Hecke M (2005) Granular matter: a tale of tails. Nature 435(7045):1041–1042

    Article  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795

    Article  Google Scholar 

  • Walls HJ, Caines SB, Sanchez AM, Khan SA (2003) Yield stress and wall slip phenomena in colloidal silica gels. J Rheol 47(4):847–868

    Article  CAS  Google Scholar 

  • Walther A, Timonen JVI, Díez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23(26):2924–2928

    Article  CAS  Google Scholar 

  • Wollny K (2001) New rheological test method to determine the dewatering kinetics of suspensions. Appl Rheol 11:202

    Google Scholar 

  • Yang MC, Scriven LE, Macosko CW (1986) Some rheological measurements on magnetic iron oxide suspensions in silicone oil. J Rheol 30(5):1015–1029

    Article  CAS  Google Scholar 

  • Yusuke Okita, Tsuguyuki Saito, Akira Isogai (2009) TEMPO-mediated oxidation of softwood thermomechanical pulp. Holzforschung 63(5):529–535

    Google Scholar 

Download references

Acknowledgments

The Academy of Finland is thanked for supporting this research. The authors thank Mr. Antton Lahnalammi for performing TEMPO-mediated oxidation of birch pulp samples and Ms. Anu Anttila for performing fluidization of TEMPO-oxidized pulp solutions. Ms. Ritva Kivelä is acknowledged for technical assistance with AFM imaging. We also thank Ms. Mirja Reinikainen, Ms. Tuyen Nguyen, and Ms. Leena Nolvi for excellent laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Pääkkönen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pääkkönen, T., Dimic-Misic, K., Orelma, H. et al. Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose 23, 277–293 (2016). https://doi.org/10.1007/s10570-015-0824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0824-7

Keywords

Navigation