Skip to main content
Log in

Controlled accessibility Lewis acid catalysed thermal reactions of regenerated cellulosic fibres

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A combination of techniques have been used to characterise lyocell regenerated cellulose fibre subjected to low-moisture thermal-catalytic reactions with zinc chloride Lewis acid. Application from non-swelling ethanol reduces catalyst accessibility, but at high temperatures migration takes place through the internal fibre morphology. The extent of chain scission is reduced at lower temperatures, leading to a higher leveling-off degree of polymerisation (LODP). In contrast, application of zinc chloride from water results in a lower LODP, due to the more even distribution of catalyst. The weights of extractable polymer material increase according to two separate rate constants, following established semicrystalline models. A higher Arrhenius activation energy for chain scission is seen for zinc chloride application from ethanol, which may be due to the physical mobilisation of the cellulose polymer at high temperature, associated with a cellulose Tg. This may also aid recrystallisation. Cellulose dehydration endotherms and pyrolysis exotherms are shifted to lower temperature for application of zinc chloride from ethanol compared to water, which may be the result of a higher local concentration of catalyst and a faster reaction onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdullah I, Blackburn RS, Russell SJ, Taylor J (2006) Abrasion phenomena in twill tencel fabric. J Appl Polym Sci 102:1391–1398

    Article  CAS  Google Scholar 

  • Afanasiev VA, Sarybaeva PI, Sultankulova AS, Vasilkova TV (1989) Cellulose sorbents obtained by the action of Lewis acids. Pure Appl Chem 61(11):1983–1986

    Google Scholar 

  • Battista OA (1950) Hydrolysis and crystallisation of cellulose. Ind Eng Chem 42(3):502–507

    Article  CAS  Google Scholar 

  • Brandrup J, Immergut EH, McDowell W (1975) In: The polymer handbook, Wiley, NJ

  • Calvini P (2005) The influence of leveling-off degree of polymerization on the kinetics of cellulose degradation. Cellulose 12:445–447

    Article  CAS  Google Scholar 

  • Calvini P, Gorassini A, Merlani AL (2008) On the kinetics of cellulose degradation: looking beyond the pseudo zero order rate equation. Cellulose 15:193–203

    Article  CAS  Google Scholar 

  • Di Blasi C, Branca C, Galgano A (2008) Products and global weight loss rates of wood decomposition catalyzed by zinc chloride. Energy & Fuels 22:663–670

    Article  CAS  Google Scholar 

  • Ding HZ, Wang ZD (2008) On the degradation evolution equations of cellulose. Cellulose 15:205–224

    Article  CAS  Google Scholar 

  • Domvoglou D, Ibbett R, Wortmann F, Taylor J (2009) Controlled thermo-catalytic modification of regenerated cellulosic fibres using magnesium chloride Lewis acid. Cellulose (accepted Jun 2009)

  • Ekenstam A (1936) The behaviour of cellulose in mineral acid solutions: kinetic study of the decomposition of cellulose in acid solutions. BER 69:540–553

    Google Scholar 

  • Emsley AM (2008) Cellulosic ethanol re-ignites the fire of cellulose degradation. Cellulose 15:187–192

    Article  CAS  Google Scholar 

  • Emsley AM, Stephens GC (1994) Kinetics and mechanisms of the low-temperature degradation of cellulose. Cellulose 1:26–56

    Article  CAS  Google Scholar 

  • Fink H-P, Weigel P, Purs HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473

    Article  CAS  Google Scholar 

  • Gaan S, Sun G (2007a) Effect of phosphorus and nitrogen on flame retardant cellulose: a study of phosphorus compounds. J Anal Appl Pyrolysis 78:371–377

    Article  CAS  Google Scholar 

  • Gaan S, Sun G (2007b) Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym Degrad Stab 92:968–974

    Article  CAS  Google Scholar 

  • Greinke RA, Medin IC, Strongsville L, Ball DR (1992) Process for producting high surface area activated carbon US 5102855

  • Hancock BC, Zografi G (1994) The relationship between the glass transition temperature and the water content of pharmaceutical solids. Pharm Res 11(4):471–477

    Article  CAS  Google Scholar 

  • Hermans PH, Weidinger A (1949) Changes in crystallinity upon heterogeneous acid hydrolysis of cellulose fibres. J Pol Sci IV:317–322

    Article  Google Scholar 

  • Ibbett RN, Domvoglou D, Fasching M (2007) Characterisation of the supramolecular structure of chemically and physically modified regenerated cellulosic fibres by means of high-resolution Carbon-13 solid-state NMR. Polymer 48:1287–1296

    Article  CAS  Google Scholar 

  • Ibbett RN, Domvoglou D, Phillips DAS (2008) The hydrolysis and recrystallisation of lyocell and comparative cellulosic fibres in solutions of mineral acid. Cellulose 15(2):241–254

    Article  CAS  Google Scholar 

  • Kandola BK, Horrocks AR (1996) Complex char formation in flame-retarded fibre intumescent combinations-II. Thermal analytical studies. Polym Degrad Stab 54:289–303

    Article  CAS  Google Scholar 

  • Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. Polym Rev 36(4):721–794

    Article  Google Scholar 

  • Khelfa A, Finqueneisel G, Auber M, Weber JV (2008) Influence of some minerals on the cellulose thermal degradation mechanisms—thermogravimetric and pyrolysis-mass spectrometry studies. J Therm Anal Calorim 92(3):795–799

    Article  CAS  Google Scholar 

  • Kim D-Y, Nishiyama Y, Wada M, Kuga S (2001) High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose 8:29–33

    Article  CAS  Google Scholar 

  • Mak CM, Yuen CWM, Ku SKA, Kan CW (2006) Changes in surface morphology of Tencel fabric during the fibrillation process. J Textile Inst 97(3):241–246

    Article  Google Scholar 

  • Morgado J, Cavaco-Paulo A, Rousselle MA (2000) Enzymatic treatment of lyocell—clarification of depilling mechanisms Jose Morgado. Textile Res J 70(8):696–699

    Article  CAS  Google Scholar 

  • Nevell TP (1983) Acid and alkali reactions of cellulose. In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Horwood Ltd, UK

    Google Scholar 

  • Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C signal strengths. Solid State Nucl Magn Reson 15:21–29

    Article  CAS  Google Scholar 

  • Paris O, Zollfrank C, Zickler GA (2005) Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis. Carbon 43:53–66

    Article  CAS  Google Scholar 

  • Salmen NL, Back EL (1977) The influence of water on the glass transition temperature of cellulose. Tappi J 60(12):137–140

    CAS  Google Scholar 

  • Sarybaeva RI, Sultankulova AS, Vasilikova TV, Afanasiev VA (1991) Degradation of cellulose in the presences of Lewis acids. Cellul Chem Technol 25:199–210

    CAS  Google Scholar 

  • Scheirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942

    Article  CAS  Google Scholar 

  • Sharples A (1954) The hydrolysis of cellulose part 1. The fine structure of Egyptian cotton. J Pol Sci 13:393–401

    Article  CAS  Google Scholar 

  • Sharples A (1957) The hydrolysis of cellulose and its relation to structure. Trans Faraday Soc 53:1003–1014

    Article  CAS  Google Scholar 

  • Sheirs J, Camino G, Avidano M, Tumiatti W (1998) Origin of furanic compounds in thermal degradation of cellulosic insulating paper. J App Pol Sci 69:2541–2547

    Article  Google Scholar 

  • Solomon OF, Ciut IZ (1962) Determination de la Viscosite Intrinseque de Solutions de Polymeres par une Simple determination de la viscosite. J App Pol Sci 4(24):68–86

    Google Scholar 

  • Song SK, Lee YY (2008) Kinetics of acid catalysed hydrolysis of cellulose under low water conditions. Ann N Y Acad Sci 434(1):164–167

    Article  Google Scholar 

  • Taylor JM, Collins GW (2007) Patent: dyeing of lyocell fabrics. WO02103104

  • Wu Q, Pan D (2002) A new cellulose based carbon fibre from a lyocell precursor. Textile Res J 72(5):405–410

    Article  CAS  Google Scholar 

  • Zou X, Uesaka T, Grunagul N (1996) Prediction of paper permanence by accelerated aging 1. Kinetic analysis of the aging process. Cellulose 3:243–267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support of the Christian Doppler Society of Austria and for the financial and technical support of Lenzing AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Ibbett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domvoglou, D., Wortmann, F., Taylor, J. et al. Controlled accessibility Lewis acid catalysed thermal reactions of regenerated cellulosic fibres. Cellulose 17, 757–770 (2010). https://doi.org/10.1007/s10570-010-9418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9418-6

Keywords

Navigation