Skip to main content
Log in

Influence of some minerals on the cellulose thermal degradation mechanisms

Thermogravimetic and pyrolysis-mass spectrometry studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of different inorganic salts (MgCl2, ZnCl2, NiCl2 and H2PtCl6) on the primary mechanisms of cellulose thermal degradation has been conducted by using thermogravimetric (TG-DTG) and pyrolysis-mass spectrometry (Py-MS) analysis at low heating rate (10°C min-1) from ambient temperature to 500°C. The results clearly demonstrate that the used salts influence the primary degradation mechanisms. Furthermore, we can assume that some inorganic salts could be considered as specific catalysts and some others as inhibitors. MgCl2 promotes selectively initial low temperature dehydration as observed both by TG and Py-MS. ZnCl2 strongly changes the thermal behaviour of impregnated sample. The maximum mass loss rate temperature is shifted to lower temperature and on the basis of our results we can conclude that ZnCl2 acts as catalyst in all primary degradation mechanisms. NiCl2 and H2PtCl6 do not modify significantly the cellulose thermal behaviour but change the composition of both produced gases and liquids suggesting that these minerals catalyse some secondary reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Piskorz, P. Majerski, D. Radlein, A. Vladars-Usas and D. S. Scott, J. Anal. Appl. Pyrolysis., 56 (2000) 145.

    Article  CAS  Google Scholar 

  2. G. W. Huber and J. A. Dumesic, Catal. Today, 11 (2006) 119.

    Article  Google Scholar 

  3. V. Visentin, F. Piva and P. Canu, Ind. Eng. Chem. Res., 41 (2002) 4965.

    Article  CAS  Google Scholar 

  4. S. Gaur and T. B Reed, Thermal Data for Natural and Synthetic Fuels; Marcel Dekker, New York 1998.

    Google Scholar 

  5. S. C. Moldoveanu, Analytical Pyrolysis of Natural Organic Polymers; Elsevier, Amsterdam 1998.

    Google Scholar 

  6. M. J. Antal and G. Várhegyi, Ind. Eng. Chem. Res., 34 (1995) 703.

    Article  CAS  Google Scholar 

  7. E. B. Sanders, A. Goldsmith and J. I. Seeman, J. Anal. Appl. Pyrolysis, 66 (2003) 29.

    Article  CAS  Google Scholar 

  8. M. Hajaligol, B. Waymack and D. Kellogg, Fuel, 80 (2001) 1799.

    Article  CAS  Google Scholar 

  9. B. B. Uzun, A. E. Pütün and E. Pütün, J. Anal. Appl. Pyrolysis, 79 (2007) 147.

    Article  CAS  Google Scholar 

  10. H. Luik, L. Luik, L. Tiikma and N. Vink, J. Anal. Appl. Pyrolysis, 79 (2007) 205.

    Article  CAS  Google Scholar 

  11. M. G. Grønli and M. C. Melaaen, Energy Fuels, 14 (2000) 791.

    Article  Google Scholar 

  12. A. G. W. Bradbury, Y. Sakai and F. Shafizadeh, J. Appl. Polym. Sci., 23 (1979) 3271.

    Article  CAS  Google Scholar 

  13. J. P. Diebold and A. Unified, Biomass Bioenergy, 7 (1994) 69.

    Article  Google Scholar 

  14. G. Várhegyi, E. Jakab and M. J. Antal, Energy Fuels, 8 (1994) 1345.

    Article  Google Scholar 

  15. I. Milosavljevic and E. M. Suuberg, Ind. Eng. Chem. Res., 34 (1995) 1081.

    Article  CAS  Google Scholar 

  16. C. Branca, A. Albano and C. Di Blasi, Thermochim. Acta, 429 (2005) 133.

    Article  CAS  Google Scholar 

  17. M. J. D. Low and C. Morterra, Carbon, 23 (1985) 311.

    Article  CAS  Google Scholar 

  18. C. A. Zaror, I. S. Hutchings, D. L. Pyle, H. N. Stiles and R. Kandiyoti, Fuel, 64 (1985) 990.

    Article  CAS  Google Scholar 

  19. G. N. Richards, J. Anal. Appl. Pyrolysis, 10 (1987) 251.

    Article  CAS  Google Scholar 

  20. P. T. Williams and P. A. Horne, Renewable Energy, 4 (1994) 1.

    Article  CAS  Google Scholar 

  21. G. Dobele, G. Rossinskaja, G. Telysheva, D. Meier and O. Faix, J. Anal. Appl. Pyrolysis, 49 (1999) 307.

    Article  CAS  Google Scholar 

  22. G. Dobele, D. Meier, O. Faix, S. Radtke, G. Rossinskaja and G. Telysheva, J. Anal. Appl. Pyrolysis, 58–59 (2001) 453.

    Article  Google Scholar 

  23. I. Tanczos, G. Pokol, J. Borsa, T. Toth and H. Schmidt, J. Anal. Appl. Pyrolysis, 68–69 (2003) 173.

    Article  Google Scholar 

  24. G. Dobele, T. Dizhbite, G. Rossinskaja, G. Telysheva, D. Meier, S. Radtke and O. Faix, J. Anal. Appl. Pyrolysis, 68–69 (2003) 197.

    Article  Google Scholar 

  25. G. Dobele, G. Rossinskaja, T. Dizhbite, G. Telysheva, D. Meier and O. Faix, J. Anal. Appl. Pyrolysis, 74 (2005) 401.

    Article  CAS  Google Scholar 

  26. D. Dollimore and J. M. Hoath, J. Thermal Anal., 49 (1997) 649.

    Article  CAS  Google Scholar 

  27. C. M. Tian, J. X. Xie, H. Z. Guo and J. Z. Xu, J. Therm. Anal. Cal., 73 (2003) 827.

    Article  CAS  Google Scholar 

  28. G. Loffler, V. J. Wargadalam and F. Winter, Fuel, 81 (2002) 711.

    Article  CAS  Google Scholar 

  29. F. A. Agblevor and S. Besler, Energy Fuels, 10 (1996) 293.

    Article  CAS  Google Scholar 

  30. C.D. Blasi, C. Branca and G. D. Errico, Thermochim. Acta, 364 (2000) 133.

    Article  CAS  Google Scholar 

  31. K. Raveendran, A. K. Ganesh and C. Khilar, Fuel, 74 (1995) 1812.

    Article  CAS  Google Scholar 

  32. P. Szabó, G. Várhegyi, F. Till and O. Faix, J. Anal. Appl. Pyrolysis, 36 (1996) 179.

    Article  Google Scholar 

  33. K. Bru, J. Blin, A. Julbe and G. Volle, J. Anal. Appl. Pyrolysis, 78 (2007) 291.

    Article  CAS  Google Scholar 

  34. R. Fahmi, A. V. Bridgwater, I. Donnison, N. Yates and J. M. Jones, Fuel, (2007) in press.

  35. J. Han and H. Kim, Renewable and Sustainable Energy Reviews, 12 (2008) 397.

    Article  CAS  Google Scholar 

  36. V. Kirubakaran, V. Sivaramakrishnan, R. Nalini, T. Sekar, M. Premalatha and P. Subramanian, Renewable and Sustainable Energy Reviews, (2007) in press.

  37. Q. Liu, C. Lv, Y. Yang, F. He and L. Ling, J. Mol. Struct., 733 (2005) 193.

    Article  CAS  Google Scholar 

  38. Q. Liu, C. Lv, Y. Yang, F. He and L. Ling, Thermochim. Acta, 419 (2004) 205.

  39. C. J. Gómez, E. Mészáros, E. Jakab, E. Velo and L. Puigjaner, J. Anal. Appl. Pyrolysis, 80 (2007) 416.

    Article  Google Scholar 

  40. C. Lievens, J. Yperman, J. Vangronsveld and R. Carleer, Fuel, (2007) in press.

  41. E. Jakab, O. Faix and F. Till, J. Anal. Appl. Pyrolysis, 40–41 (1997) 171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisèle Finqueneisel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khelfa, A., Finqueneisel, G., Auber, M. et al. Influence of some minerals on the cellulose thermal degradation mechanisms. J Therm Anal Calorim 92, 795–799 (2008). https://doi.org/10.1007/s10973-007-8649-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8649-8

Keywords

Navigation