Skip to main content
Log in

A reverse KAM method to estimate unknown mutual inclinations in exoplanetary systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The inclinations of exoplanets detected via radial velocity method are essentially unknown. We aim to provide estimations of the ranges of mutual inclinations that are compatible with the long-term stability of the system. Focusing on the skeleton of an extrasolar system, i.e. considering only the two most massive planets, we study the Hamiltonian of the three-body problem after the reduction of the angular momentum. Such a Hamiltonian is expanded both in Poincaré canonical variables and in the small parameter \(D_2\), which represents the normalised angular momentum deficit. The value of the mutual inclination is deduced from \(D_2\) and, thanks to the use of interval arithmetic, we are able to consider open sets of initial conditions instead of single values. Looking at the convergence radius of the Kolmogorov normal form, we develop a reverse KAM approach in order to estimate the ranges of mutual inclinations that are compatible with the long-term stability in a KAM sense. Our method is successfully applied to the extrasolar systems HD 141399, HD 143761 and HD 40307.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The angular momentum deficit is defined as the difference between the total value of the angular momentum and its value in the case of Keplerian circular coplanar orbits having radii equal to the semi-major axes of the planets.

  2. Actually, when the mild hypotheses assumed in Morbidelli and Giorgilli (1995) are satisfied, the diffusion time is estimated to be super-exponentially big. This means that its order of magnitude is given by the exponential of the exponential of the inverse of a fractional power of the distance from a reference KAM torus.

  3. Precisely, being C the total angular momentum, i.e. \(C=\sum _{k=i}^2 \varLambda _k \sqrt{1-e_k^2} \cos i_k\), the angular momentum deficit is defined as \(\hbox {AMD} =\sum _{k=i}^2 \varLambda _k (1-\sqrt{1-e_k^2} \cos i_k)\).

  4. In the Laplace plane frame, the region of the Lidov–Kozai resonance is characterised by the libration of the argument of the pericenter of the inner planet (see Lidov 1962). The implicit adoption of such a frame has been essential in order to perform the reduction of the angular momentum sketched in Sect. 2.1. Therefore, the comparison between our results and those for that resonant region is valid because also our Hamiltonian model is written in the secular canonical coordinates with respect to the Laplace plane.

References

  • Arnold, V.I.: Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Usp. Mat. Nauk 18, 13 (1963a)

    Google Scholar 

  • Arnold, V.I.: Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv. 18, 9 (1963b)

    Article  Google Scholar 

  • BeaugĂ©, C., Ferraz-Mello, S., Michtchenko, T.A.: Multi-planet extrasolar systems—detection and dynamics. Res. Astron. Astrophys. 12, 1044–1080 (2012)

    Article  ADS  Google Scholar 

  • Biasco, L., Chierchia, L., Valdinoci, E.: N-dimensional elliptic invariant tori for the planar (N \(+\) 1)-body problem. SIAM J. Math. Anal. 37(5), 1560–1588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Butler, R.P., Wright, J.T., Marcy, G.W., Fischer, D.A., Vogt, S.S., Tinney, C.G., Jones, H.R.A., Carter, B.D., Johnson, J.A., McCarthy, C., Penny, A.J.: Catalog of nearby exoplanets. Astrophys. J. 646, 505–522 (2006)

    Article  ADS  Google Scholar 

  • Celletti, A.: Construction of librational invariant tori in the spin-orbit problem. J. Appl. Math. Phys. (ZAMP) 45, 61–80 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Celletti, A., Chierchia, L. (eds.): KAM Stability and Celestial Mechanics: Memoirs of the American Mathematical Society, vol. 187. American Mathematical Society, Providence, RI (2007)

    Google Scholar 

  • Celletti, A., Giorgilli, A., Locatelli, U.: Improved estimates on the existence of invariant tori for Hamiltonian systems. Nonlinearity 13, 397–412 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ferraz-Mello, S.: The convergence domain of the Laplacian expansion of the disturbing function. CeMDA 58, 37–52 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Gabern, F., Jorba, A., Locatelli, U.: On the construction of the Kolmogorov normal form for the Trojan asteroids. Nonlinearity 18, 1705–1734 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Giorgilli, A., Locatelli, U., Sansottera, M.: On the convergence of an algorithm constructing the normal form for lower dimensional elliptic tori in planetary systems. Celest. Mech. Dyn. Astron. 119, 397–424 (2014)

    Article  ADS  MATH  Google Scholar 

  • Giorgilli, A., Locatelli, U., Sansottera, M.: Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability in the light of Kolmogorov and Nekhoroshev theories. Regul. Chaotic Dyn. 22, 54–77 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Giorgilli, A., Sansottera, M.: Methods of algebraic manipulation in perturbation theory. Workshop Ser. Asociacion Argentina de Astronomia 3, 147–183 (2011)

    ADS  Google Scholar 

  • Gröbner, W., Knapp, H.: Contributions to the Method of Lie-Series. Bibliographisches Institut, Gotha (1967)

    MATH  Google Scholar 

  • Kolmogorov, A.N.: Preservation of conditionally periodic movements with small change in the Hamilton function. Dokl. Akad. Nauk SSSR, vol. 98, no. 527 (1954). Engl. transl. in: Los Alamos Scientific Laboratory translation LA-TR-71-67; reprinted in: Lecture Notes in Physics, vol. 93

  • Laskar, J.: Systèmes de variables et Ă©lĂ©ments. In: Benest, D., FroeschlĂ©, C. (eds.) Les MĂ©thodes modernes de la MĂ©canique CĂ©leste, pp. 63–87. Editions Frontières, Dreux (1989a)

    Google Scholar 

  • Laskar, J.: A numerical experiment on the chaotic behaviour of the solar system. Nature 338, 237–238 (1989b)

    Article  ADS  Google Scholar 

  • Laskar, J.: The chaotic motion of the solar system—a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990)

    Article  ADS  Google Scholar 

  • Laskar, J.: Large scale chaos and marginal stability in the solar system. Celest. Mech. Dyn. Astron. 64, 115–162 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Laskar, J.: Large scale chaos and the spacing of the inner planets. Astron. Astrophys. 317, L75–L78 (1997)

    ADS  Google Scholar 

  • Laskar, J.: Frequency map analysis and quasi periodic decompositions. In: Benest, D., FroeschlĂ©, C., Lega, E. (eds.) Hamiltonian Systems and Fourier Analysis. Taylor and Francis, Cambridge (2003)

    Google Scholar 

  • Laskar, J., Correia, A.C.M.: HD 60532, a planetary system in a 3:1 mean motion resonance. Astron. Astrophys. 496, L5–L8 (2009)

    Article  ADS  Google Scholar 

  • Laskar, J., Gastineau, M.: Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. Nature 459, 817–819 (2009)

    Article  ADS  Google Scholar 

  • Laskar, J., Petit, A.C.: AMD-stability and the classification of planetary systems. Astron. Astrophys. 605, A72 (2017)

    Article  ADS  Google Scholar 

  • Libert, A.S., Henrard, J.: Analytical study of the proximity of exoplanetary systems to mean-motion resonances. Astron. Astrophys. 461, 759–763 (2007)

    Article  ADS  Google Scholar 

  • Libert, A.-S., Sansottera, M.: On the extension of the Laplace–Lagrange secular theory to order two in the masses for extrasolar systems. Celest. Mech. Dyn. Astron. 117, 149–168 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Libert, A.-S., Tsiganis, K.: Kozai resonance in extrasolar systems. Astron. Astrophys. 493, 677–686 (2009)

    Article  ADS  MATH  Google Scholar 

  • Lidov, M.L.: The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962)

    Article  ADS  Google Scholar 

  • Locatelli, U., Giorgilli, A.: Invariant tori in the secular motions of the three-body planetary systems. Celest. Mech. Dyn. Astron. 78, 47–74 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Locatelli, U., Giorgilli, A.: Invariant tori in the Sun-Jupiter-Saturn system. DCDS-B 7, 377–398 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Morbidelli, A., Giorgilli, A.: Superexponential stability of KAM tori. J. Stat. Phys. 78, 1607–1617 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Moser, J.: Nachrichten der Akademie der Wissenschaften in Göttingen: II. Akademie der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse. Vandenhoeck & Ruprecht, Akademie der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse (1962)

  • Páez, R.I., Locatelli, U.: Trojan dynamics well approximated by a new Hamiltonian normal form. MNRAS 453, 2177–2188 (2015)

    Article  ADS  Google Scholar 

  • Páez, R.I., Locatelli, U., Efthymiopoulos, C.: New Hamiltonian expansions adapted to the Trojan problem. Celest. Mech. Dyn. Astron. 126, 519–541 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • PoincarĂ©, H.: Leçons de MĂ©canique CĂ©leste professĂ©es a la Sorbonne. Tome I, ThĂ©orie gĂ©nĂ©rale des perturbations planetaires, Gautier-Villars, Paris (1905)

  • Petit, A.C., Laskar, J., BouĂ©, G.: AMD-stability in the presence of first-order mean motion resonances. Astron. Astrophys. 607, A35 (2017)

    Article  ADS  Google Scholar 

  • Robutel, P.: Stability of the planetary three-body problem—II. KAM theory and existence of quasiperiodic motions. Celest. Mech. Dyn. Astron. 62, 219–261 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sansottera, M., Locatelli, U., Giorgilli, A.: On the stability of the secular evolution of the planar Sun-Jupiter-Saturn-Uranus system. Math. Comput. Simul. 88, 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Winn, J.N., Fabrycky, D.C.: The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.S. has been partially supported by the National Group of Mathematical Physics (GNFM-INdAM), as part of the project “Normal Form techniques in Lattice Dynamics and Celestial Mechanics: perturbed resonant dynamics via resonant normal forms”. U.L. has been financially supported by both GNFM-INdAM and the project “DEXTEROUS - Uncovering Excellence 2014” of the University of Rome “Tor Vergata”. M.V. acknowledges financial support from the FRIA fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Volpi.

Additional information

This article is part of the topical collection on Recent advances in the study of the dynamics of N-body problem.

Guest Editors: Giovanni Federico Gronchi, Ugo Locatelli, Giuseppe Pucacco and Alessandra Celletti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpi, M., Locatelli, U. & Sansottera, M. A reverse KAM method to estimate unknown mutual inclinations in exoplanetary systems. Celest Mech Dyn Astr 130, 36 (2018). https://doi.org/10.1007/s10569-018-9829-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9829-5

Keywords

Mathematics Subject Classification

Navigation