Skip to main content
Log in

On the convergence of an algorithm constructing the normal form for elliptic lower dimensional tori in planetary systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We give a constructive proof of the existence of elliptic lower dimensional tori in nearly integrable Hamiltonian systems. In particular we adapt the classical Kolmogorov normalization algorithm to the case of planetary systems, for which elliptic tori may be used as replacements of elliptic Keplerian orbits in Lagrange-Laplace theory. With this paper we support with rigorous convergence estimates the semi-analytic work in our previous article (Sansottera et al., Celest Mech Dyn Astron 111:337–361, 2011), where an explicit calculation of an invariant torus for a planar model of the Sun-Jupiter-Saturn-Uranus system has been made. With respect to previous works on the same subject we exploit the characteristic of Lie series giving a precise control of all terms generated by our algorithm. This allows us to slightly relax the non-resonance conditions on the frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Precisely, \(\mathcal{G}_{\varrho }=\big \{z\in \mathbb {C}^{n_1}:\max _{1\le j\le n_1}|z_j|<\varrho \big \}\), \(\mathbb {T}^{n_1}_{\sigma }=\big \{q\in \mathbb {C}^{n_1}:\mathrm{Re}q_j\in \mathbb {T}, \max _{1\le j\le n_1}|\mathrm{Im}q_j|< \sigma \big \}\), \(\mathcal{B}_R=\{z\in \mathbb {C}^{2n_2}: \max _{1\le j\le 2n_2} |z_j|<R\,\}\) and \(\mathcal{W}_h = \big \{z\in \mathbb {C}^{n_1}: \exists \ \omega \in \mathcal{W}, \max _{1\le j\le n_1}|z_j-\omega _j|<h\big \}\).

  2. First, let us remark that \(\varepsilon ^{\star }_{\mathrm{an}}=\mathcal{O}(e^{-6\varGamma })\) in view of the definitions in (61). By definitions 2 and 3 we get that \(\varGamma =\sum \limits _{r\ge 1} [-\log \gamma +\tau \log (rK)]/[r(r+1)]\,\). Therefore, \(e^{-\varGamma }=\mathcal{O}(\gamma )\,\), as one can easily verify that \(\sum \limits _{r\ge 1} 1/[r(r+1)]=1\,\). For this purpose, it is enough to check by induction that \(\sum \limits _{r=1}^{s} 1/[r(r+1)]=s/(s+1)\) for \(s\ge 1\,\).

References

  • Arnold, V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Usp. Math. Nauk. 18(6), 91 (1963a)

    Google Scholar 

  • Arnold, V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Russ. Math. Surv. 18(6), 85 (1963b)

    Article  Google Scholar 

  • Berti, M., Biasco, L.: Branching of Cantor manifolds of elliptic tori and applications to PDEs. Commun. Math. Phys. 305, 741–796 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Biasco, L., Chierchia, L., Valdinoci, E.: Elliptic two-dimensional invariant tori for the planetary three-body problem. Arch. Ration. Mech. Anal. 170, 91–135 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Biasco, L., Chierchia, L., Valdinoci, E.: N-dimensional elliptic invariant tori for the planar (N+1)-body problem. SIAM J. Math. Anal. 37(5), 1560–1588 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Chierchia, L., Falcolini, C.: A direct proof of a theorem by Kolmogorov in Hamiltonian systems. Ann. Sc. Norm. Sup. Pisa, Serie IV. XXI, 541–593 (1994)

  • Eliasson, L.H.: Absolutely convergent series expansion for quasi-periodic motions, report 2–88. Dept. of Math., Univ. of Stockolm (1988a). Published in MPEJ, 3, n. 4, 1–33 (1996)

  • Eliasson, L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Ann. Scuola Norm. Sup. Pisa, Cl. Sci., IV Serie 15, 115–147 (1988b)

    MATH  MathSciNet  Google Scholar 

  • Gallavotti, G.: Twistless KAM tori. Commun. Math. Phys. 164, 145–156 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Gentile, G., Mastropietro, V.: Methods of analysis of the Lindstedt series for KAM tori and renormalizability in classical mechanics. A review with some applications. Rev. Math. Phys. 8, 393–444 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Giorgilli, A.: Notes on exponential stability of Hamiltonian systems. In: Dynamical systems, Part I. Pubbl. Cent. Ric. Mat. Ennio De Giorgi, Sc. Norm. Sup. Pisa, 87–198 (2003)

  • Giorgilli, A., Locatelli, U.: Kolmogorov theorem and classical perturbation theory. J. Appl. Math. Phys. (ZAMP) 48, 220–261 (1997a)

    Article  MATH  MathSciNet  Google Scholar 

  • Giorgilli, A., Locatelli, U.: On classical series expansion for quasi-periodic motions. MPEJ 3(5), 1–25 (1997b)

    MathSciNet  Google Scholar 

  • Giorgilli, A, Locatelli, U.: A classical self-contained proof of Kolmogorov’s theorem on invariant tori. In: Simó C (ed) Proceedings of the NATO ASI school “Hamiltonian systems with three or more degrees of freedom”. NATO ASI series C: Math. Phys. Sci., Vol. 533. Kluwer Academic Publishers, Dordrecht-Boston-London, pp. 72–89 (1999)

  • Giorgilli, A., Locatelli, U., Sansottera, M.: Kolmogorov and Nekhoroshev theory for the problem of three bodies. Celest. Mech. Dyn. Astron. 104, 159–173 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Giorgilli, A., Locatelli, U., Sansottera, M.: Improved convergence estimate for the Schröder-Siegel problem. AMPA (2014). doi:10.1007/s10231-014-0408-4

    MATH  Google Scholar 

  • Giorgilli, A., Marmi, S.: Convergence radius in the Poincaré-Siegel problem. DCDS Series S 3, 601–621 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Giorgilli, A., Morbidelli, A.: Invariant KAM tori and global stability for Hamiltonian systems. ZAMP 48, 102–134 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Gröbner, W.: Die Lie-Reihen und Ihre Anwendungen. Springer, Berlin (1960). Le serie di Lie e le loro applicazioni, Cremonese, Roma, Italian transl. (1973)

  • Jefferys, W.H., Moser, J.: Quasi-periodic solutions for the three-body problem. Astron. J. 71, 568–578 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  • Kolmogorov, A.N.: Preservation of conditionally periodic movements with small change in the Hamilton function. Dokl. Akad. Nauk SSSR, 98, 527–530 (1954). English transl. in: Los Alamos Scientific Laboratory translation LA-TR-71-67. Reprinted. In: G. Casati and J. Ford Eds., Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Lecture Notes in Phys. 93, 51–56, Springer, Berlin-New York (1979)

  • Kuksin, S.B.: The perturbation theory for the quasi-periodic solutions of infinite-dimensional Hamiltonian systems and its applications to the Korteweg de Vries equation. Matem. Sbornik, 136 (1988); English transl. in: Math. USSR Sbornik, 64, 397–413 (1989)

  • Laskar, J.: Systèmes de variables et éléments. In Benest, D., Froeschlé, C. (eds.), Les Méthodes modernes de la Mécanique Céleste (Goutelas 89), pp. 63–87 (1989)

  • Libert, A.-S., Sansottera, M.: On the extension of the Laplace-Lagrange secular theory to order two in the masses for extrasolar systems. Celest. Mech. Dyn. Astron. 117, 149–168 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lieberman, B.B.: Existence of quasi-periodic solutions to the three-body problem. Celest. Mech. 3, 408–426 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Locatelli, U., Giorgilli, A.: Invariant tori in the secular motions of the three-body planetary systems. Celest. Mech. Dyn. Astron. 78, 47–74 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Locatelli, U., Giorgilli, A.: Invariant tori in the Sun–Jupiter–Saturn system. DCDS-B 7, 377–398 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Melnikov, V.K.: On some cases of conservation of almost periodic motions with a small change of the Hamiltonian function. Dokl. Akad. Nauk SSSR 165, 1245–1248 (1965)

    MathSciNet  Google Scholar 

  • Morbidelli, A., Giorgilli, A.: Superexponential stability of KAM tori. J. Stat. Phys. 78, 1607–1617 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gött., II Math. Phys. Kl., pp. 1–20 (1962)

  • Nekhoroshev, N.N.: Exponential estimates of the stability time of near-integrable Hamiltonian systems. Russ. Math. Surv. 32, 1 (1977)

    Article  MATH  Google Scholar 

  • Nekhoroshev, N.N.: Exponential estimates of the stability time of near-integrable Hamiltonian systems, 2. Trudy Sem. Petrovs. 5, 5 (1979)

    MATH  MathSciNet  Google Scholar 

  • Pöschel, J.: On elliptic lower dimensional tori in Hamiltonian systems. Math. Z. 202, 559–608 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Pöschel, J.: A KAM-theorem for some nonlinear PDEs. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 23, 119–148 (1996)

    MATH  Google Scholar 

  • Sansottera, M., Locatelli, U., Giorgilli, A.: A semi-analytic algorithm for constructing lower dimensional elliptic tori in planetary systems. Celest. Mech. Dyn. Astron. 111, 337–361 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Sansottera, M., Locatelli, U., Giorgilli, A.: On the stability of the secular evolution of the planar Sun-Jupiter-Saturn-Uranus system. Math. Comput. Simul. 88, 1–14 (2013)

Download references

Acknowledgments

A. G. and U. L. have been partially supported by the research program “Teorie geometriche e analitiche dei sistemi Hamiltoniani in dimensioni finite e infinite”, PRIN 2010JJ4KPA_009, financed by MIUR. U. L. has been partially supported also by Marie Curie ITN “Astronet II”, EC contract PITN-GA-2011-289240. The work of M. S. has been supported by an FSR Incoming Post-doctoral Fellowship of the Académie universitaire Louvain, co-funded by the Marie Curie Actions of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Sansottera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 202 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgilli, A., Locatelli, U. & Sansottera, M. On the convergence of an algorithm constructing the normal form for elliptic lower dimensional tori in planetary systems. Celest Mech Dyn Astr 119, 397–424 (2014). https://doi.org/10.1007/s10569-014-9562-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9562-7

Keywords

Navigation