Skip to main content
Log in

Large scale chaos and marginal stability in the solar system

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Large scale chaos is present everywhere in the solar system. It plays a major role in the sculpting of the asteroid belt and in the diffusion of comets from the outer region of the solar system. All the inner planets probably experienced large scale chaotic behavior for their obliquities during their history. The Earth obliquity is presently stable only because of the presence of the Moon, and the tilt of Mars undergoes large chaotic variations from 0° to about 60°. On billion years time scale, the orbits of the planets themselves present strong chaotic variations which can lead to the escape of Mercury or collision with Venus in less than 3.5 Gyr. The organization of the planets in the solar system thus seems to be strongly related to this chaotic evolution, reaching at all time a state of marginal stability, that is practical stability on a time-scale comparable to its age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Applegate, J.H., Douglas, M.R., Gursel, Y., Sussman, G.J. and Wisdom, J.: 1986, “The solar system for 200 million years,’ Astron. J. 92, 176–194

    Google Scholar 

  • Arnold V.: 1963x, Proof of Kolmogorov's theorem on the preservation of quasi-periodic motions under small perturbations of the hamiltonien, Rus. Math. Surv. 18, N6 9–36

    Google Scholar 

  • Arnold, V. I.: 1963b, ‘Small denominators and problems of stability of motion in classical celestial mechanics,’ Russian Math. Surveys, 18, 6, 85–193

    Google Scholar 

  • Bretagnon, P.: 1974, Termes a longue périodes dans le système solaire, Astron. Astrophys 30 341–362

    Google Scholar 

  • Brumberg, V.A., Chapront, J.: 1973, Construction of a general planetary theory of the first order, Cel. Mech. 8 335–355

    Google Scholar 

  • Carpino, M., Milani, A. and Nobili, A.M.: 1987, Long-term numerical integrations and synthetic theories for the motion of the outer planets, Astron. Astrophys 181 182–194

    Google Scholar 

  • Celletti, A.: 1990x, Analysis of resonances in the spin-orbit problem in celestial mechanics: the synchronous resonance (Part I), J. Appl. Math. Phys. (ZAMP) 41 174–204

    Google Scholar 

  • Celletti, A.: 1990b, Analysis of resonances in the spin-orbit problem in celestial mechanics: higher order resonances and some numerical experiments (Part II), J. Appl. Math. Phys. (ZAMP) 41 453–479

    Google Scholar 

  • Chirikov, B.V.: 1979, A universal instability of many dimensional oscillator systems, Physics Reports 52 263–379

    Google Scholar 

  • Chirikov, B.V., Vecheslavov, V.V.: 1989, Chaotic dynamics of comet Halley, Astron. Astrophys. 221, 146–154

    Google Scholar 

  • Cohen, C.J., Hubbard, E.C., Oesterwinter, C.: 1973,, Astron. Papers Am. Ephemeris XXII 1

    Google Scholar 

  • Colombo, G.: 1966, Astron. J., 71, 891–896

    Google Scholar 

  • Dermott, S.F., Murray, C. D.: Nature of the Kirkwood gaps in the asteroidal belt, Nature, 301, 201–205

  • Dobrovolskis, A.R.: 1980, Atmospheric Tides and the Rotation of Venus JI.Spin Evolution, Icarus, 41, 18–35

    Google Scholar 

  • Dones, L., Tremaine, S.: 1993a, Why does the Earth spin forward?, Science 259 350–354

    Google Scholar 

  • Dones, L., Tremaine, S.: 1993b, On the origin of planetary spins, Icarus 103 67–92

    Google Scholar 

  • Dumas, H. S., Laskar, J.: 1993, Global Dynamics and Long-Time Stability in Hamiltonian Systems via Numerical Frequency Analysis, Phys. Rev. Lett. 70, 2975–2979

    Google Scholar 

  • Duncan, M., Quinn, T., Tremaine, S.: 1988, The origin of short period comets Astrophys. J. Lett, 328, L69-L73

    Google Scholar 

  • Duncan, M., Quinn, T., Tremaine, S.: 1989, The Long-Term evolution of orbits in the solar system: a mapping approach Icarus, 82, 402–418

    Google Scholar 

  • Duriez, L.: 1979, Approche d'une théorie générale planétaire en variable elliptiques héliocentriques, these Lille

  • Farinella, P., Froeschlé, Ch., Gonczi, R.: 1993, Meteorites from the asteroid 6 Hebe, Cel. Mech. 56 287–305

    Google Scholar 

  • Farinella, P., Froeschlé, C., Gonczi, R.: 1994, Meteorite delivery and transport, in Symposium IAU 160, A. Milani, M. Di Martino, A. Cellino, eds, 205–222, Kluwer, Dordrecht

    Google Scholar 

  • Fernández, J.A.: 1980, On the existence of a comet belt beyond Neptune, Mon. Not. Roy. AStron. Soc., 192, 481–492

    Google Scholar 

  • Fernández, J.A.: 1994, Dynamics of comets: recent developments and new challenges, in Symposium IAU 160, A. Milani, M. Di Martino, A. Cellino, eds, 223–240, Kluwer, Dordrecht

    Google Scholar 

  • Ferraz-Mello, S.: 1994, Kirkwood gaps and resonant groups, in Symposium IAU 160, A. Milani, M. Di Martino, A. Cellino, eds, 175–188, Kluwer, Dordrecht

    Google Scholar 

  • Froeschlé, C., Scholl, H.: 1977 A qualitative comparison between the circular and elliptic Sun-Jupiter-asteroid problem at commensurabilities Astron. Astrophys. 57, 33–59

    Google Scholar 

  • Froeschlé C. Gonzci R., 1988, On the stochasticity of Halley like comets, Cedes. Mech. 43, 325–330

    Google Scholar 

  • Giorgilli A., Delshams A., Fontich, E., Galgani L., Simo C.: 1989, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, J. Diff. Equa. 77 167–198

    Google Scholar 

  • Gladman, B., Duncan, M.: 1990, On the fates of minor bodies in the outer solar system Astron. J., 100 (5)

  • Goldreich, P., Peale S.J.: 1970, The obliquity of Venus, Astron. J., 75, 273–284

    Google Scholar 

  • Haretu, S.C.: 1885, Sur l'invariabilité des grands axes des orbites planétaires Ann. Obs. Paris, XVIII, I1-I39

    Google Scholar 

  • Harris A.L., Ward, W.R.: 1982, Dynamical constraints on the formation and evolution of planetary bodies, Ann. Rev. Earth Planet Sci. 10 61–108

    Google Scholar 

  • Hart, M.H.: 1978, The evolution of the atmosphere of the Earth, Icarus 33 23–39

    Google Scholar 

  • Hénon, M. and Heiles, C.: 1964, The applicability of the third integral of motion: some numerical experiment, Astron. J., 69, 73–79

    Google Scholar 

  • Holman, MA., Wisdom, J.: 1993, Dynamical stability in the outer solar system and the delivery of short period comets Astron. J., 105(5)

  • Imbrie, J.: 1982, Astronomical Theory of the Pleistocene ice ages: a brief historical review, Icarus 50 408–422

    Google Scholar 

  • Jakosky, B.M., Henderson, B.G., Mellon, M.T.: 1993, Chaotic obliquity and the nature of the Martian climate, Bull. Am. Astron. Soc., 25, 1041

    Google Scholar 

  • Kinoshita, H., Nakai, H.: 1984, Motions of the perihelion of Neptune and Pluto, Cel. Mech. 34 203

    Google Scholar 

  • Klavetter, J.J.: 1989, Rotation of Hyperion. I. Observations Astron. J., 97(2), 570–579

    Google Scholar 

  • Kolmogorov, A.N.: 1954, On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian Dokl. Akad. Nauk. SSSR, 98, 469

    Google Scholar 

  • Kuiper, G. P.: 1951, On the origin of the solar system, in Astrophysics, J.A. Hyneck (Ed.), McGraw-Hill, New York, 357–427

    Google Scholar 

  • Lagrange, J. L.: 1776, Sur l'altération des moyens mouvements des planètes Mem. Acad. Sci. Berlin, 199 Oeuvres complètes VI 255 Paris, Gauthier-Villars (1869)

    Google Scholar 

  • Laplace, P.S.: 1772, Mémoire sur les solutions particulières des equations différentielles et sur les inégalités séculaires des planètes Oeuvres complètes 9 325 Paris, GauthierVillars (1895)

    Google Scholar 

  • Laplace, P.S.: 1784, Mémoire sur les inégalites séculaires des planètes et des satellites Mem. Acad. royale des Sciences de Paris, Oeuvres complètes XI 49 Paris, Gauthier-Villars (1895)

    Google Scholar 

  • Laplace, P.S.: 1785, Théorie de Jupiter et de Saturne Mem. Acad. royale des Sciences de Paris, Oeuvres complètes XI 164 Paris, Gauthier-Villars (1895)

    Google Scholar 

  • Laskar, J.: 1984, Thesis, Observatoire de Paris

  • Laskar, J.: 1985, Accurate methods in general planetary theory, Astron. Astrophys. 144 133–146

    Google Scholar 

  • Laskar, J.: 1986, Secular terms of classical planetary theories using the results of general theory Astron. Astrophys. 157 59–70

    Google Scholar 

  • Laskar, J.: 1988, Secular evolution of the solar system over 10 million years, Astron. Astrophys. 198 341–362

    Google Scholar 

  • Laskar, J.: 1989, A numerical experiment on the chaotic behaviour of the Solar System Nature, 338, 237–238

    Google Scholar 

  • Laskar, J.: 1990, The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones, Icarus, 88, 266–291

    Google Scholar 

  • Laskar, J.: 1992a, A few points on the stability of the solar system, in Chaos, Resonance and collective dynamical phenomena in the Solar System, Symposium IAU 152, S. Ferraz-Mello ed., 1–16, Kluwer, Dordrecht

    Google Scholar 

  • Laskar, J.: 1992b, La stabilité du Système Solaire, in Chaos et Déteminisme, A. Dahan et al., eds., Seuil, Paris

    Google Scholar 

  • Laskar, J.: 1993a, Frequency analysis for multi-dimensional systems. Global dynamics and diffusion,Physica D 67 257–281

    Google Scholar 

  • Laskar, J.: 1993b, La Lune et Forigine de l'homme, Pour La Science, 186, avril 1993

  • Laskar, J.: 1994, Large scale chaos in the solar system, Astron. Astrophys. 287 L9-L12

    Google Scholar 

  • Laskar, J., Quinn, T., Tremaine, S.: 1992a, Confirmation of Resonant Structure in the Solar System, Icarus, 95, 148–152

    Google Scholar 

  • Laskar, J., Froeschlé, C., Celletti, A.: 1992b, The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping, Physica D, 56, 253–269

    Google Scholar 

  • Laskar, J. Robutel, P.: 1993, The chaotic obliquity of the planets, Nature, 361, 608–612

    Google Scholar 

  • Laskar, J., Joutel, F., Robutel, P.: 1993a, Stabilization of the Earth's obliquity by the Moon, Nature 361 615–617

    Google Scholar 

  • Laskar, J., Joutel, F., Boudin, F.: 1993b, Orbital, Precessional, and insolation quantities for the Earth from −20Myr to +10Myr, Astron. Astrophys 270 522–533

    Google Scholar 

  • Le verrier U.J.J.: 1856, Ann. Obs. Paris, II Mallet-Bachelet, Paris

    Google Scholar 

  • Levison, H.F., Duncan, M.J.: 1993, The gravitational sculpting of the Kuiper belt, Astrophys. J. Lett., 406, L35-L38

    Google Scholar 

  • Lissauer J.J., Safronov V.S.: 1991, The random component of planetary rotation, Icarus 93 288–297

    Google Scholar 

  • Lochak, P.: 1993, Hamiltonian perturbation theory: periodic orbits, resonances and intermittency, Nonlinearity, 6, 885–904

    Google Scholar 

  • Luu, J.: 1994, The Kuiper belt, in Symposium IAU 160, A. Milani, M. Di Martino, A. Cellino, eds, 31–44, Kluwer, Dordrecht

    Google Scholar 

  • Morbidelli, A., Moons, M.: 1993, Secular resonances in mean motion commensurabilities: the 2/1 and 3/2 cases, Icarus 102 1–17

    Google Scholar 

  • Morbidelli, A., Giorgilli, A.: Superexponential stability of KAM tori, J. Stat. Phys. 78, (1995) 1607–1617

    Google Scholar 

  • Natenzon, M.Y., Neishtadt, A.I., Sagdeev, R.Z., Seryakov, G.K., Zaslavsky, G.M.: 1990, Chaos in the Kepler problem and long period comet dynamics, Phys. Lett. A, 145, 255–263

    Google Scholar 

  • Nekhoroshev, N.N.: 1977, An exponential estimates for the time of stability of nearly integrable Hamiltonian systems, Russian Math. Surveys, 32, 1–65

    Google Scholar 

  • Newhall, X. X., Standish, E. M., Williams, J. G.: 1983, DE102: a numerically integrated ephemeris of the Moon and planets spanning forty-four centuries, Astron. Astrophys. 125 150–167

    Google Scholar 

  • Niederman, L., 1994, Résonance et stabilité dans le problème planétaire Thesis, Paris 6 Univ.

  • Nobili, A.M., Milani, A. and Carpino, M.: 1989, Fundamental frequencies and small divisors in the orbits of the outer planets, Astron. Astrophys. 210 313–336

    Google Scholar 

  • Peale S.J.: 1974, Possible History of the Obliquity of Mercury, Astron. J., 6, 722–744

    Google Scholar 

  • Peale S.J.: 1976, Inferences from the Dynamical History of Mercury's Rotation, Icarus, 28, 459–467

    Google Scholar 

  • Petrosky, T.Y.: 1986, Chaos and cometary clouds in the solar system, Phys. Lett. A, 117, 328–332

    Google Scholar 

  • Poincaré, H.: 1892–1899, Les Méthodes Nouvelles de la Mécanique Céleste, tomes I–III, Gauthier Villard, Paris, reprinted by Blanchard, 1987

    Google Scholar 

  • Poisson, S.D.: 1809, Sur les inégalités séculaires des moyens mouvements des planètes Journal de l'Ecole Polytechnique, VIII, 1

    Google Scholar 

  • Quinlan, G.: 1993, personal communication

  • Quinlan, G.D.: 1992, Numerical experiments on the motion of the outer planets., Chaos, resonance and collective dynamical phenomena in the solar system Ferraz-Mello, S. 25–32 Kluwer Acad. Publ. IAU Symposium 152

  • Quinn, T.R., Tremaine, S., Duncan, M.: 1991, ‘A three million year integration of the Earth's orbit,’ Astron. J. 101, 2287–2305

    Google Scholar 

  • Robutel, P.: 1995, Stability of the planetary three-body problem. II KAM theory and existence of quasiperiodic motions, Celes. Mech. 62, 219–261

    Google Scholar 

  • Safronov: 1969, Evolution of the protoplanetary cloud and formation of the Earth and the planets, Nauka, Moskva

    Google Scholar 

  • Sagdeev, R.Z., Zaslavsky, G.M.: 1987, Stochasticity in the Kepler problem and a model of possible dynamics of comets in the OOrt cloud, Il Nuovo Cimento, 97B, 119–130

    Google Scholar 

  • Stephenson, F.R., Yau, K.K.C., Hunger, H.: 1984, Nature, 314, 587

    Google Scholar 

  • Stevenson, D.J.: 1987, Origin of the Moon. The collision hypothesis, Ann. Rev. Earth Planet. Sci. 15 271–315

    Google Scholar 

  • Sussman, G.J., and Wisdom, J.: 1988, ‘Numerical evidence that the motion of Pluto is chaotic.‘ Science 241, 433–437

    Google Scholar 

  • Sussman, G.J., and Wisdom, J.: 1992, ‘Chaotic evolution of the solar system’, Science 257, 56–62

    Google Scholar 

  • Torbett M.V., Smoluchovski, R.: 1990, Chaotic motion in a primordial comet disk beyond Neptune and comet influx to the solar system, Nature, 345, 49–51

    Google Scholar 

  • Touma, J., Wisdom, J.: 1993, ‘The chaotic obliquity of Mars‘, Science 259, 1294–1297

    Google Scholar 

  • Ward W.R.: 1974, Climatic Variations on Mars: 1. Astronomical Theory of Insolation, J. Geophys. Res., 79, 3375–3386

    Google Scholar 

  • Ward W.R., Rudy D.J.: 1991, Resonant Obliquity of Mars?, Icarus, 94, 160–164

    Google Scholar 

  • Wisdom, J.: 1983, Chaotic behaviour and the origin of the 3/1 Kirkwood gap, Icarus 56 51–74

    Google Scholar 

  • Wisdom, J.: 1985, A perturbative treatment of motion near the 3/1 commensurability, Icarus 63 272–289

    Google Scholar 

  • Wisdom, J.: 1987a, Rotational dynamics of irregularly shaped natural satellites, Astron. J. 94 (5) 1350–1360

    Google Scholar 

  • Wisdom, J.: 1987b, Chaotic dynamics in the solar system, Icarus 72 241–275

    Google Scholar 

  • Wisdom, J., Peale, S.J., Mignard, F.: 1984, The chaotic rotation of Hyperion, Icarus 58 137–152

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This lecture was given at the XIth International Congress of Mathematical Physics, Paris, july 1994

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laskar, J. Large scale chaos and marginal stability in the solar system. Celestial Mech Dyn Astr 64, 115–162 (1996). https://doi.org/10.1007/BF00051610

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00051610

Keywords

Navigation