Skip to main content
Log in

On the extension of the Laplace-Lagrange secular theory to order two in the masses for extrasolar systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We study the secular evolution of several exoplanetary systems by extending the Laplace-Lagrange theory to order two in the masses. Using an expansion of the Hamiltonian in the Poincaré canonical variables, we determine the fundamental frequencies of the motion and compute analytically the long-term evolution of the Keplerian elements. Our study clearly shows that, for systems close to a mean-motion resonance, the second order approximation describes their secular evolution more accurately than the usually adopted first order one. Moreover, this approach takes into account the influence of the mean anomalies on the secular dynamics. Finally, we set up a simple criterion that is useful to discriminate between three different categories of planetary systems: (i) secular systems (HD 11964, HD 74156, HD 134987, HD 163607, HD 12661 and HD 147018); (ii) systems near a mean-motion resonance (HD 11506, HD 177830, HD 9446, HD 169830 and \(\upsilon \) Andromedae); (iii) systems really close to or in a mean-motion resonance (HD 108874, HD 128311 and HD 183263).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Let us note that the Jacobi variables are less suitable for our purpose, as they require a Taylor expansion in the planetary masses.

  2. We recall that, as shown by Poisson, the semi-major axes are constant up to the second order in the masses. Here we expand around their initial values, but we could also have taken their average values over a long-term numerical integration (see, e.g., Sansottera et al. 2013).

  3. Let us note that more recent parametrizations consistent with a \(30^\circ \) mutual inclination of the two planets (McArthur et al. 2010) and a fourth planet in the system (Curiel et al. 2010) have been introduced.

  4. For sake of completeness, we check that computing the “averaged” initial conditions using the generating functions \(\chi _1\) and \(\chi _2\), as in the approximation at order two in the masses, does not influence neither qualitatively nor quantitatively the results.

References

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn, vol. 60. Springer, Berlin, Graduate Texts in Mathematics (1989)

  • Beaugé, C., Nesvorńy, D., Dones, L.: A high-order analytical model for the secular dynamics of irregular satellites. Astron. J. 131, 2299–2313 (2006)

    Article  ADS  Google Scholar 

  • Birkhoff, G.D.: Dynamical Systems, vol. IX. AMS Colloquium Publications (1927)

  • Celletti, A., Chierchia, L.: KAM Stability and Celestial Mechanics, vol. 187, pp. 1–134. Mem. American Mathematical Society (2007)

  • Curiel, S., Canto, J., Georgiev, L., Chavez, C., Poveda, A.: A fourth planet orbiting upsilon Andromedae. Astron. Astrophys. 525, A78 (2010)

    Article  Google Scholar 

  • Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1, 12–30 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fejoz, J.: Démonstration du “théorème d’Arnold” sur la stabilité du système planétaire (d’après Michael Herman). Ergod. Theory Dyn. Syst. 24(5), 1521–1582 (2005)

    Article  MathSciNet  Google Scholar 

  • Ford, E.B., Kozinsky, B., Rasio, F.A.: Secular evolution of hierarchical triple star systems. Astrophys. J. 535, 385–401 (2000)

    Article  ADS  Google Scholar 

  • Gabern, F., Jorba, A., Locatelli, U.: On the construction of the Kolmogorov normal form for the Trojan asteroids. Nonlinearity 18(4), 1705–1734 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Giorgilli, A.: Quantitative methods in classical perturbation theory. In: Roy, A.E., Steves, B.D. (eds.) From Newton to chaos: modern techniques for understanding and coping with chaos in N-body dynamical systems. Nato ASI school. Plenum Press, New York (1995)

  • Giorgilli, A., Locatelli, U.: Introduction to canonical perturbation theory for nearly integrable systems, Chaotic worlds. In: Proceedings of the Nato Advanced Study Institute (2003)

  • Giorgilli, A., Locatelli, U., Sansottera, M.: Kolmogorov and Nekhoroshev theory for the problem of three bodies. Celest. Mech. Dyn. Astron. 104, 159–173 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Giorgilli, A., Sansottera, M.: Methods of algebraic manipulation in perturbation theory. Workshop Series of the Asociacion Argentina de Astronomia, vol. 3, pp. 147–183 (2011)

  • Giguere, M.J., Fischer, D.A., Howard, A.W. et al.: A high eccentricity component in the double planet system around HD 163607 and a planet around HD 164509. Astrophys. J. 744, id. 4 (2012)

    Google Scholar 

  • Hébrard, G., Bonfils, X., Ségransan, D., et al.: The SOPHIE search for northern extrasolar planets II. A multi-planet system around HD9446. Astron. Astrophys. 513, id. A69 (2010)

    Google Scholar 

  • Henrard, J.: The algorithm of the inverse for Lie transform. Recent Adv. Dyn. Astron. Astrophys. Space Sci. Libr. 39, 248–257 (1973)

    ADS  Google Scholar 

  • Hori, G.-I.: Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18, 287–296 (1966)

    ADS  Google Scholar 

  • Jones, H.R.A., Butler, R.P., Tinney, C.G., et al.: A long-period planet orbiting a nearby Sun-like star. Mon. Notices R. Astron. Soc. 403, 1703–1713 (2010)

    Article  ADS  Google Scholar 

  • Katz, B., Dong, S., Malhotra, R.: Long-term cycling of Kozai-Lidov cycles: extreme eccentricities and inclinations excited by a distant eccentric perturber. Phys. Rev. Lett. 107, 181101 (2011)

    Article  ADS  Google Scholar 

  • Kholshevnikov, K.: D’Alembertian functions in celestial mechanics. Astron. Rep. 41, 135–142 (1997)

    Google Scholar 

  • Kholshevnikov, K.: The Hamiltonian in the planetary or satellite problem as a d’Alembertian function. Astron. Rep. 45, 577–579 (2001)

    Article  ADS  Google Scholar 

  • Kolmogorov, A.N.: Preservation of conditionally periodic movements with small change in the Hamilton function. Dokl. Akad. Nauk SSSR, 98, 527 (1954). Engl. transl. in: Los Alamos Scientific Laboratory translation LA-TR-71-67; reprinted in. Lecture Notes in Physics 93

  • Laskar, J.: Secular evolution over 10 million years. Astron. Astrophys. 198, 341–362 (1988)

    ADS  Google Scholar 

  • Laskar, J.: Systèmes de variables et éléments, pp. 63–87. Les Méthodes modernes de la Mécanique Céleste, Editions Frontières (1989)

  • Laskar, J., Robutel, P.: Stability of the planetary three-body problem—I. Expansion of the planetary hamiltonian. Celest. Mech. Dyn. Astron. 62, 193–217 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Laskar, J., Robutel, P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lee, M.H., Peale, S.J.: Secular evolution of hierarchical planetary systems. Astrophys. J. 592, 1201–1216 (2003)

    Article  ADS  Google Scholar 

  • Libert, A.-S., Henrard, J.: Analytical approach to the secular behaviour of exoplanetary systems. Celest. Mech. Dyn. Astron. 93, 187–200 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Libert, A.-S., Henrard, J.: Secular apsidal configuration of non-resonant exoplanetary systems. Icarus 183, 186–192 (2006)

    Article  ADS  Google Scholar 

  • Libert, A.-S., Henrard, J.: Analytical study of the proximity of exoplanetary systems to mean-motion resonances. Astron. Astrophys. 461, 759–763 (2007)

    Article  ADS  Google Scholar 

  • Libert, A.-S., Delsate, N.: Interesting dynamics at high mutual inclination in the framework of the Kozai problem with an eccentric perturber. Mon. Notices R. Astron. Soc. 422, 2725–2736 (2012)

    Article  ADS  Google Scholar 

  • Locatelli, U., Giorgilli, A.: Construction of Kolmogorov’s normal form for a planetary system. Regul. Chaotic Dyn. 10, 153–171 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Locatelli, U., Giorgilli, A.: Invariant tori in the Sun-Jupiter-Saturn system. Discrete Continuous Dyn. Syst. Ser. B 7, 377–398 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Mayor, M., Udry, S., Naef, D., et al.: The CORALIE survey for southern extra-solar planets XII. Orbital solutions for 16 extra-solar planets discovered with CORALIE. Astron. Astrophys. 415, 391–402 (2004)

    Google Scholar 

  • Meschiari, S., Laughlin, G., Vogt, S.S., et al.: The LICK-CARNEGIE survey: four new exoplanet candidates. Astrophys. J. 727, 117–128 (2011)

    Article  ADS  Google Scholar 

  • McArthur, B.E., Benedict, G.F., Barnes, R., Martioli, E., Korzennik, S., Ed. Nelan, Butler, R.P.: New observational constraints on the \(\upsilon \) andromedae system with data from the hubble space telescope and Hobby-Eberly telescope. Astrophys. J. 715, 1203–1220 (2010)

  • Naoz, S., Farr, W.M., Lithwick, Y., Rasio, F.A., Teyssandier, J.: Hot Jupiters from secular planet-planet interactions. Nature 473, 187–189 (2011)

    Article  ADS  Google Scholar 

  • Poincaré, H.: Les méthodes nouvelles de la Mécanique Céleste, Gauthier-Villars (1892)

  • Poincaré, H.: Leçons de Mécanique Céleste, tomes I-II, Gauthier-Villars (1905)

  • Robutel, P.: Stability of the planetary three-body problem—II. KAM theory and existence of quasiperiodic motions. Celest. Mech. Dyn. Astron. 62, 219–261 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sansottera, M., Locatelli, U., Giorgilli, A.: A semi-analytic algorithm for constructing lower dimensional elliptic tori in planetary systems. Celest. Mech. Dyn. Astron. 111, 337–361 (2011)

    Google Scholar 

  • Sansottera, M., Locatelli, U., Giorgilli, A.: On the stability of the secular evolution of the planar Sun-Jupiter-Saturn-Uranus system. Math. Comput. Simul. 88, 1–14 (2013)

    Google Scholar 

  • Segransan, D., Udry, S., Mayor, M., et al.: The CORALIE survey for southern extrasolar planets. XVI. Discovery of a planetary system around HD 147018 and of two long period and massive planets orbiting HD 171238 and HD 204313. Astron. Astrophys. 511, id. A45 (2009)

    Google Scholar 

  • Tuomi, M., Kotiranta, S.: Bayesian analysis of the radial velocities of HD 11506 reveals another planetary companion. Astron. Astrophys. 496, L13–L16 (2009)

    Article  ADS  Google Scholar 

  • Veras, D., Armitage, P.J.: Extrasolar planetary dynamics with a generalized planar Laplace-Lagrange secular theory. Astrophys. J. 661, 1311–1322 (2007)

    Article  ADS  Google Scholar 

  • Wittenmyer, R.A., Endl, M., Cochran, W.D., et al.: A search for multi-planet systems using the HOBBY-EBERLY Telescope. Astrophys. J. Suppl. Ser. 182, 97–119 (2009)

    Article  ADS  Google Scholar 

  • Wright, J.T., Upadhyay, S., Marcy, G.W., Fisher, D.A., et al.: Ten new and updated multiplanet systems and a survey of exoplanetary systems. Astrophys. J. 693, 1084–1099 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work of A.-S. L. is supported by an FNRS Postdoctoral Research Fellowship. The work of M. S. is supported by an FSR Incoming Post-doctoral Fellowship of the Académie universitaire Louvain, co-funded by the Marie Curie Actions of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Sophie Libert.

Appendix: Secular Hamiltonian for the \(\upsilon \) Andromedae up to order 6

Appendix: Secular Hamiltonian for the \(\upsilon \) Andromedae up to order 6

We report here the expansion of the secular Hamiltonian \(\mathcal{H }^{(\mathrm{sec})}\) (Eq. (10)) of the \(\upsilon \) Andromedae extrasolar system up to degree \(6\) in \(({\varvec{\xi }},{\varvec{\eta }})\,\). In particular, we show both the approximations at order one and two in the masses to highlight the differences. A detailed description of the \(\upsilon \) Andromedae system is given in Sect. 5. As this system is near the 5:1 mean-motion resonance, the main difference between the two secular approximations affects terms that are at least of order 6 in the canonical secular variables.

\(\xi _1\)

\(\xi _2\)

\(\eta _1\)

\(\eta _2\)

First order

Second order

0

0

0

0

\(-3.8449638957147059 \times 10^{+0}\)

\(-3.8490132363346130 \times 10^{+0}\)

2

0

0

0

\(-4.7203675679835364 \times 10^{-4}\)

\(-4.7442843563932181 \times 10^{-4}\)

1

1

0

0

\( 1.9765062410537654 \times 10^{-4}\)

\( 1.9478085580405423 \times 10^{-4}\)

0

2

0

0

\(-1.2594397524843563 \times 10^{-4}\)

\(-1.2389253809188814 \times 10^{-4}\)

0

0

2

0

\(-4.7203675679835364 \times 10^{-4}\)

\(-4.7442843563932181 \times 10^{-4}\)

0

0

1

1

\( 1.9765062410537654 \times 10^{-4}\)

\( 1.9478085580405423 \times 10^{-4}\)

0

0

0

2

\(-1.2594397524843563 \times 10^{-4}\)

\(-1.2389253809188814 \times 10^{-4}\)

4

0

0

0

\( 1.4338305925091211 \times 10^{-4}\)

\( 1.4383176583648995 \times 10^{-4}\)

3

1

0

0

\( 4.3147125112054390 \times 10^{-4}\)

\( 4.5045949999300181 \times 10^{-4}\)

2

2

0

0

\(-7.4883810227863515 \times 10^{-4}\)

\(-7.5868060326294868 \times 10^{-4}\)

2

0

2

0

\( 2.8676611850182422 \times 10^{-4}\)

\( 2.8766295710810365 \times 10^{-4}\)

2

0

1

1

\( 4.3147125112054390 \times 10^{-4}\)

\( 4.5045950531661890 \times 10^{-4}\)

2

0

0

2

\(-5.1509576520639426 \times 10^{-4}\)

\(-5.2857952689768168 \times 10^{-4}\)

1

3

0

0

\( 3.3341302753346505 \times 10^{-4}\)

\( 3.2386648540035952 \times 10^{-4}\)

1

1

2

0

\( 4.3147125112054390 \times 10^{-4}\)

\( 4.5045950531661890 \times 10^{-4}\)

1

1

1

1

\(-4.6748467414448156 \times 10^{-4}\)

\(-4.6020211054162414 \times 10^{-4}\)

1

1

0

2

\( 3.3341302753346505 \times 10^{-4}\)

\( 3.2386626581402522 \times 10^{-4}\)

0

4

0

0

\(-9.4514514989701095 \times 10^{-5}\)

\(-9.0913589478614943 \times 10^{-5}\)

0

2

2

0

\(-5.1509576520639426 \times 10^{-4}\)

\(-5.2857952689768124 \times 10^{-4}\)

0

2

1

1

\( 3.3341302753346505 \times 10^{-4}\)

\( 3.2386626581402554 \times 10^{-4}\)

0

2

0

2

\(-1.8902902997940219 \times 10^{-4}\)

\(-1.8182716424233877 \times 10^{-4}\)

0

0

4

0

\( 1.4338305925091211 \times 10^{-4}\)

\( 1.4383176583649006 \times 10^{-4}\)

0

0

3

1

\( 4.3147125112054390 \times 10^{-4}\)

\( 4.5045949999300165 \times 10^{-4}\)

0

0

2

2

\(-7.4883810227863515 \times 10^{-4}\)

\(-7.5868060326294889 \times 10^{-4}\)

\(\xi _1\)

\(\xi _2\)

\(\eta _1\)

\(\eta _2\)

First order

Second order

0

0

1

3

\( 3.3341302753346505 \times 10^{-4}\)

\( 3.2386648540035947 \times 10^{-4}\)

0

0

0

4

\(-9.4514514989701095 \times 10^{-5}\)

\(-9.0913589478614848 \times 10^{-5}\)

6

0

0

0

\( 8.0737006151169034 \times 10^{-5}\)

\( 1.3917499875750025 \times 10^{-4}\)

5

1

0

0

\(-1.4728781329895123 \times 10^{-4}\)

\(-5.7065127472031446 \times 10^{-4}\)

4

2

0

0

\(-3.8625662439607426 \times 10^{-4}\)

\( 8.8051997114562091 \times 10^{-4}\)

4

0

2

0

\( 2.4221101845350710 \times 10^{-4}\)

\( 4.1753226095492534 \times 10^{-4}\)

4

0

1

1

\(-1.4728781329895123 \times 10^{-4}\)

\(-5.7066077231623241 \times 10^{-4}\)

4

0

0

2

\( 4.4154338663068642 \times 10^{-5}\)

\( 3.1718226339201008 \times 10^{-4}\)

3

3

0

0

\( 1.1715817984811095 \times 10^{-3}\)

\(-9.4757874129889675 \times 10^{-4}\)

3

1

2

0

\(-2.9457562659790246 \times 10^{-4}\)

\(-1.1413685872968715 \times 10^{-3}\)

3

1

1

1

\(-8.6082192611828580 \times 10^{-4}\)

\( 1.1266453489623077 \times 10^{-3}\)

3

1

0

2

\( 9.0270698998234857 \times 10^{-4}\)

\(-7.3916625373992911 \times 10^{-4}\)

2

4

0

0

\(-1.0274689835474350 \times 10^{-3}\)

\( 8.0672276683552634 \times 10^{-4}\)

2

2

2

0

\(-3.4210228573300561 \times 10^{-4}\)

\( 1.1977229419632242 \times 10^{-3}\)

2

2

1

1

\( 1.7093314154786317 \times 10^{-3}\)

\(-1.3644052823847199 \times 10^{-3}\)

2

2

0

2

\(-1.4654674698375437 \times 10^{-3}\)

\( 1.2083393139899557 \times 10^{-3}\)

2

0

4

0

\( 2.4221101845350710 \times 10^{-4}\)

\( 4.1753226095492669 \times 10^{-4}\)

2

0

3

1

\(-2.9457562659790246 \times 10^{-4}\)

\(-1.1413685872968726 \times 10^{-3}\)

2

0

2

2

\(-3.4210228573300561 \times 10^{-4}\)

\( 1.1977229419632145 \times 10^{-3}\)

2

0

1

3

\( 9.0270698998234857 \times 10^{-4}\)

\(-7.3916701878536670 \times 10^{-4}\)

2

0

0

4

\(-4.3799848629010854 \times 10^{-4}\)

\( 4.0161436876523369 \times 10^{-4}\)

1

5

0

0

\( 3.8723701961918303 \times 10^{-4}\)

\(-2.8749294965146893 \times 10^{-4}\)

1

3

2

0

\( 9.0270698998234857 \times 10^{-4}\)

\(-7.3916701878535239 \times 10^{-4}\)

1

3

1

1

\(-1.1789409945146532 \times 10^{-3}\)

\( 8.1021818828667783 \times 10^{-4}\)

1

3

0

2

\( 7.7447403923836607 \times 10^{-4}\)

\(-5.7498741718758071 \times 10^{-4}\)

1

1

4

0

\(-1.4728781329895123 \times 10^{-4}\)

\(-5.7066077231623220 \times 10^{-4}\)

1

1

3

1

\(-8.6082192611828580 \times 10^{-4}\)

\( 1.1266453489623106 \times 10^{-3}\)

1

1

2

2

\( 1.7093314154786317 \times 10^{-3}\)

\(-1.3644052823847082 \times 10^{-3}\)

1

1

1

3

\(-1.1789409945146532 \times 10^{-3}\)

\( 8.1021818828667317 \times 10^{-4}\)

1

1

0

4

\( 3.8723701961918303 \times 10^{-4}\)

\(-2.8749285273268994 \times 10^{-4}\)

0

6

0

0

\(-6.9390702058934342 \times 10^{-5}\)

\( 6.9301447295937329 \times 10^{-5}\)

0

4

2

0

\(-4.3799848629010854 \times 10^{-4}\)

\( 4.0161436876524556 \times 10^{-4}\)

0

4

1

1

\( 3.8723701961918303 \times 10^{-4}\)

\(-2.8749285273267357 \times 10^{-4}\)

0

4

0

2

\(-2.0817210617680304 \times 10^{-4}\)

\( 2.0789708715975659 \times 10^{-4}\)

0

2

4

0

\( 4.4154338663068642 \times 10^{-5}\)

\( 3.1718226339199647 \times 10^{-4}\)

0

2

3

1

\( 9.0270698998234857 \times 10^{-4}\)

\(-7.3916625373990645 \times 10^{-4}\)

0

2

2

2

\(-1.4654674698375437 \times 10^{-3}\)

\( 1.2083393139899626 \times 10^{-3}\)

0

2

1

3

\( 7.7447403923836607 \times 10^{-4}\)

\(-5.7498741718756510 \times 10^{-4}\)

0

2

0

4

\(-2.0817210617680304 \times 10^{-4}\)

\( 2.0789708715975702 \times 10^{-4}\)

0

0

6

0

\( 8.0737006151169034 \times 10^{-5}\)

\( 1.3917499875750112 \times 10^{-4}\)

\(\xi _1\)

\(\xi _2\)

\(\eta _1\)

\(\eta _2\)

First order

Second order

0

0

5

1

\(-1.4728781329895123 \times 10^{-4}\)

\(-5.7065127472031587 \times 10^{-4}\)

0

0

4

2

\(-3.8625662439607426 \times 10^{-4}\)

\( 8.8051997114559945 \times 10^{-4}\)

0

0

3

3

\( 1.1715817984811095 \times 10^{-3}\)

\(-9.4757874129888428 \times 10^{-4}\)

0

0

2

4

\(-1.0274689835474350 \times 10^{-3}\)

\( 8.0672276683552298 \times 10^{-4}\)

0

0

1

5

\( 3.8723701961918303 \times 10^{-4}\)

\(-2.8749294965147088 \times 10^{-4}\)

0

0

0

6

\(-6.9390702058934342 \times 10^{-5}\)

\( 6.9301447295938372 \times 10^{-5}\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libert, AS., Sansottera, M. On the extension of the Laplace-Lagrange secular theory to order two in the masses for extrasolar systems. Celest Mech Dyn Astr 117, 149–168 (2013). https://doi.org/10.1007/s10569-013-9501-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9501-z

Keywords

Navigation