Skip to main content
Log in

Multi-product splitting and Runge-Kutta-Nyström integrators

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The splitting of eh(A+B) into a single product of ehA and ehB results in symplectic integrators when A and B are classical Lie operators. However, at high orders, a single product splitting, with exponentially growing number of operators, is very difficult to derive. This work shows that, if the splitting is generalized to a sum of products, then a simple choice of the basis product reduces the problem to that of extrapolation, with analytically known coefficients and only quadratically growing number of operators. When a multi-product splitting is applied to classical Hamiltonian systems, the resulting algorithm is no longer symplectic but is of the Runge-Kutta-Nyström (RKN) type. Multi-product splitting, in conjunction with a special force-reduction process, explains why at orders p = 4 and 6, RKN integrators only need p − 1 force evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, J.: Beiträge zum Runge-Kutta-Verfahren. Zeitschrift für Angewandte Mathematik und Mechanik 35, 100–110 (1955) reproduced in Ref. Battin (1999)

  • Bandrauk A.D., Shen H.: Exponential split operator methods for solving coupled time-dependent Schrödinger equations. J. Chem. Phys. 99, 1185 (1993)

    Article  ADS  Google Scholar 

  • Battin R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition. AIAA, Reston, VA (1999)

    MATH  Google Scholar 

  • Blanes S., Casas F., Ros J.: Extrapolation of symplectic integrators. Celest. Mech. Dyn. Astron. 75, 149–161 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Blanes S., Casas F.: Raising the order of geometric numerical integrators by composition and extrapolation. Numer. Alogritm. 38, 305–326 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Brankin R.W., Gladwell I., Dormand J.R., Prince P.J., Seward W.L.: Algorithm 670: a Runge-Kutta-Nyström code. ACM Trans. Math. Softw. (TOMS) 15, 31–40 (1989)

    Article  MATH  Google Scholar 

  • Breiter S. et al.: Two fast integrators for the Galactic tide effects in the Oort Cloud. Mon. Not. R. Astron. Soc. 377, 1151–1162 (2007)

    Article  ADS  Google Scholar 

  • Calvo M.P., Sanz-Serna J.M.: High-order symplectic Runge-Kutta-Nyström methods. SIAM J. Numer. Anal. 14, 1237–1252 (1993)

    MATH  MathSciNet  Google Scholar 

  • Chambers J., Murison M.A.: Pseudo-high-order symplectic integrators. Astron. J. 119, 425–433 (2000)

    Article  ADS  Google Scholar 

  • Chin S.A.: The physics of symplectic integrators: perihelion advances and symplectic corrector algorithms. Phys. Rev. E 75, 036701 (2007a)

    Article  MathSciNet  ADS  Google Scholar 

  • Chin S.A.: Forward and non-forward symplectic integrators in solving classical dynamics problems. Int. J. Compt. Math. 84, 729–747 (2007b)

    Article  MATH  MathSciNet  Google Scholar 

  • Chin S.A., Chen C.R.: Fourth order gradient symplectic integrator methods for solving the time-dependent Schrödinger equation. J. Chem. Phys. 114, 7338 (2001)

    Article  ADS  Google Scholar 

  • Chin S.A., Kidwell D.W.: Higher-order force gradient symplectic algorithms. Phys. Rev. E 62, 8746–8752 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  • Chin S.A., Janecek S., Krotscheck E.: Any order imaginary time propagation method for solving the Schrödinger equation. Chem. Phys. Lett. 470, 342–346 (2009)

    Article  ADS  Google Scholar 

  • Creutz M., Gocksch A.: Higher-order hydrid Monte-Carlo algorithms. Phys. Rev. Letts. 63, 9–12 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  • Dormand J., El-Mikkawy M., Prince P.: High-order embedded Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 423–430 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Dragt A.J., Finn J.M.: Lie series and invariant functions for analytic symplectic maps. J. Math. Phys. 17, 2215–2224 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Drozdov A.N., Brey J.J.: Operator expansions in stochastic dynamics. Phys. Rev. E 57, 1284–1289 (1998)

    Article  ADS  Google Scholar 

  • El-Mikkawy M.E.A.: Explicit inverse of a generalized Vandermonde matrix. App. Math. Comput. 146, 643–651 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Emel’yanenko V.V.: A method of symplectic integrations with adaptive time-steps for individual Hamiltonians in the planetry N-body problem. Celest. Mech. Dyn. Astron. 98, 191–202 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Forest E., Ruth R.D.: 4th-order symplectic integration. Phys. D 43, 105–117 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Forbert H.A., Chin S.A.: Fourth-order algorithms for solving the multivariable Langevin equation and the Kramers equation. Phys. Rev. E 63, 016703 (2001)

    ADS  Google Scholar 

  • Gladman B., Duncan M., Candy J.: Symplectic integrators for long-term integration in Celestial Mechanics. Celest. Mech. Dyn. Astron. 52, 221–240 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Glasner M., Yevick D., Hermansson B.: Generalized propagation formulas of arbitrarily high order. J. Chem. Phys. 95, 8266 (1991)

    Article  ADS  Google Scholar 

  • González A.B., Martín P., López D.J.: Behavior of a new type of Runge-Kutta methods when integrating satellite orbits. Celest. Mech. Dyn. Astron. 77, 29–38 (1999)

    Article  Google Scholar 

  • Gragg W.B.: On extrapolation algorithms for ordinary initial value problems. SIAM J. Number. Anal. 2, 384–404 (1965)

    MathSciNet  Google Scholar 

  • Hadjifotinou K.G., Gousidou-Koutita M.: Comparison of numerical methods for the integration of natural satellite systems. Celest. Mech. Dyn. Astron. 70, 99–113 (1998)

    Article  MATH  ADS  Google Scholar 

  • Hairer E., Lubich C., Wanner G.: Geometric Numerical Integration. Springer, Berlin-New York (2002)

    MATH  Google Scholar 

  • Hairer E., Norsett S.P., Wanner G.: Solving Ordinary Differential Equations I - Nonstiff Problems, Second Edition. Springer, Berlin (1993)

    Google Scholar 

  • Kahan W., Li R.-C.: Composition constants for raising the orders of unconventional schemes for ordinary differential equations. Math. Comput. 66, 1089–1099 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kinoshita H., Yoshida H., Nakai H.: Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 50, 59–71 (1991)

    Article  MATH  ADS  Google Scholar 

  • Laskar J., Robutel P.: Higher order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Leimkuhler B., Reich S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • McLachlan R.: Composition methods in the presence of a small parameters. BIT 35, 258–268 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • McLachlan R.I., Quispel G.R.: Splitting methods. Acta Numerica 11, 241–434 (2002)

    Article  MathSciNet  Google Scholar 

  • Milani A., Nobili A.M.: Integration errors over very long time spans. Celest. Mech. 43, 1–34 (1988)

    MATH  MathSciNet  ADS  Google Scholar 

  • Miller, A.: quad_df.f90, (2002), http://users.bigpond.net.au/amiller/quad.html

  • Neri F.: Lie Algebra and Canonical Integration. Department of Physics, Univeristy of Maryland print, MD, USA (1987)

    Google Scholar 

  • Nyström E.J.: Über die Numerische Integration von Differentialgleichungen. Acta Soc. Sci. Ferrica 50, 1–55 (1925)

    Google Scholar 

  • Omelyan I.P.: Extrapolated gradientlike algorithms for molecular dynamics and celestial mechanics simulations. Phys. Rev. E 74, 036703 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  • Ruth R.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669–2671 (1983)

    Article  ADS  Google Scholar 

  • Sanz-Serna J.M., Portillo A.: Classical numerical integrators for wave-packet dynamics. J. Chem. Phys. 104, 2349 (1996)

    Article  ADS  Google Scholar 

  • Schatzman M.: Numerical integration of reaction-diffusion systems. Numer. Algoritm. 31, 247–269 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Schmidt K.E., Lee M.A.: High-accuracy Trotter-Formula method for path integrals. Phys. Rev. E 51, 5495–5498 (1995)

    Article  ADS  Google Scholar 

  • Sheng Q.: Solving linear partial differential equations by exponential splitting. IMA J. Numer. Anal. 9, 199–212 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Sofroniou M., Spaletta G.: Derivation of symmetric composition constants for symmetric integrators. Optim. Method Softw. 20, 597–613 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Suzuki M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146, 319–323 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  • Suzuki M., Umeno K.: Higher-order decomposition theory of of exponential operators and symplectic integrators. In: Landau, D., Mon, K., Shuttler, H. (eds) Computer Simulation Studies in Condensed Matter Physics VI, pp. 74–86. Springer, Berlin (1993)

    Google Scholar 

  • Tsitouras C.H.: A Tenth order symplectic Runge-Kutta-Nyström method. Celest. Mech. Dyn. Astron. 74, 223–230 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Wisdom J., Holman M.: Symplectic maps for the N-body problem. Astron. J. 102, 1528–1538 (1991)

    Article  ADS  Google Scholar 

  • Yoshida H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  • Yoshida H.: Recent progress in the theory and application of symplectic integrators. Celest. Mech. Dyn. Astron. 56, 27–43 (1993)

    Article  MATH  ADS  Google Scholar 

  • Zillich R.E., Mayrhofer J.M., Chin S.A.: Extrapolated high-order propagator for path integral Monte Carlo simulations. J. Chem. Phys. 132, 044103 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu A. Chin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, S.A. Multi-product splitting and Runge-Kutta-Nyström integrators. Celest Mech Dyn Astr 106, 391–406 (2010). https://doi.org/10.1007/s10569-010-9255-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9255-9

Keywords

Navigation