Skip to main content
Log in

A method of symplectic integrations with adaptive time-steps for individual Hamiltonians in the planetary N-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

A new algorithm is developed for long-term integrations of the N-body problem. The method uses symplectic integrations of the Hamiltonian equations of motion for each body. This allows one to employ individual adaptive time-steps in computations. The efficiency of this technique is demonstrated by several tests performed for typical problems of Solar System dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarseth S. (2003). Gravitational N-Body Simulations. Tools and Algorithms. Cambridge monographs on Mathematical Physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Brouwer D. and Woerkom A.J.J. (1950). The secular variations of the orbital elements of the principal planets. Astron. Pap., Washington 13: 85–107

    Google Scholar 

  • Chambers J.E. (1999). A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. Roy. Astron. Soc. 304: 793–799

    Article  ADS  Google Scholar 

  • Duncan M.J., Levison H.F. and Lee M.H. (1998). A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116: 2067–2077

    Article  ADS  Google Scholar 

  • Emel’yanenko V.V. (2002). An explicit symplectic integrator for cometary orbits. Celest. Mech. Dyn. Astron. 84: 331–341

    Article  MATH  ADS  Google Scholar 

  • Fukushima T. (2003). Efficient orbit integration by scaling for Kepler energy consistency. Astron. J. 126: 1097–1111

    Article  ADS  Google Scholar 

  • Gladman B., Duncan M. and Candy J. (1991). Symplectic integrators for long-term integrations in Celestial Mechanics. Celest. Mech. Dyn. Astron. 52: 221–240

    Article  ADS  Google Scholar 

  • Hairer E. and Söderlind G. (2005). Explicit, time reversible, adaptive step size control. SIAM J. Sci. Comput. 26: 1838–1851

    Article  MATH  Google Scholar 

  • Lee M.H., Duncan M.J. and Levison H.F. (1997). Variable timestep integrators for long-term orbital integrations. In: Clarke, D.A. and West, M.J. (eds) Proc. 12th Kingston Meeting, Computational Astrophysics., pp 32–38. Astronomical Society of the Pacific, San Francisco

    Google Scholar 

  • Mikkola S. (1997). Practical symplectic methods with time transformation for the few-body problem. Celest. Mech. Dyn. Astron. 67: 145–165

    Article  MATH  ADS  Google Scholar 

  • Mikkola S. and Aarseth S. (2002). A time-transformed leapfrog scheme. Celest. Mech. Dyn. Astron. 84: 343–354

    Article  MATH  ADS  Google Scholar 

  • Mikkola S. and Innanen K. (2002). Individual accuracy checks for massive bodies and particles in symplectic integration. Astron. J. 124: 3445–3448

    Article  ADS  Google Scholar 

  • Mikkola S. and Tanikawa K. (1999). Explicit symplectic algorithms for time-transformed Hamiltonians. Celest. Mech. Dyn. Astron. 74: 287–295

    Article  MATH  ADS  Google Scholar 

  • Mikkola S. and Wiegert P. (2002). Regularizing time transformations in symplectic and composite integration. Celest. Mech. Dyn. Astron. 82: 375–390

    Article  MATH  ADS  Google Scholar 

  • Preto M. and Tremaine S. (1999). A class of symplectic integrators with adaptive timestep for separable Hamiltonian systems. Astron. J. 118: 2532–2541

    Article  ADS  Google Scholar 

  • Rauch K.P. and Holman M. (1999). Dynamical chaos in the Wisdom–Holman integrator: origins and solutions. Astron. J. 117: 1087–1102

    Article  ADS  Google Scholar 

  • Saha P. and Tremaine S. (1992). Symplectic integrators for Solar System dynamics. Astron. J. 104: 1633–1640

    Article  ADS  Google Scholar 

  • Saha P. and Tremaine S. (1994). Long-term planetary integration with individual time steps. Astron. J. 108: 1962–1969

    Article  ADS  Google Scholar 

  • Sanz-Serna J.M. and Calvo M.P. (1994). Numerical Hamiltonian Problems. Chapman & Hall, London

    MATH  Google Scholar 

  • Sharaf Sh.G. and Budnikova N.A. (1967). On the secular changes of the orbital elements of the Earth influencing a climate of the geological past. Bull. Inst. Theor. Astron. Akad. Nauk SSSR 11: 231–261

    Google Scholar 

  • Stiefel E.L. and Scheifele G. (1971). Linear and Regular Celestial Mechanics. Springer-Verlag, Berlin, Heidelberg, New York

    MATH  Google Scholar 

  • Szebehely V. (1967). Theory of Orbits. Academic Press, New York

    Google Scholar 

  • Wisdom J. and Holman M. (1991). Symplectic maps for the N-body problem. Astron. J. 102: 1528–1538

    Article  ADS  Google Scholar 

  • Wisdom J., Holman M. and Touma J. (1996). Symplectic correctors. Fields Inst. Commun. 10: 217–244

    Google Scholar 

  • Yoshida H. (1990). Construction of higher order symplectic integrators. Phys. Lett. A 150: 262–268

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vacheslav Vasilievitch Emel’yanenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emel’yanenko, V.V. A method of symplectic integrations with adaptive time-steps for individual Hamiltonians in the planetary N-body problem. Celestial Mech Dyn Astr 98, 191–202 (2007). https://doi.org/10.1007/s10569-007-9077-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-007-9077-6

Keywords

Navigation