Skip to main content
Log in

The HLLC Riemann solver

  • Review
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The HLLC (Harten–Lax–van Leer contact) approximate Riemann solver for computing solutions to hyperbolic systems by means of finite volume and discontinuous Galerkin methods is reviewed. HLLC was designed, as early as 1992, as an improvement to the classical HLL (Harten–Lax–van Leer) Riemann solver of Harten, Lax, and van Leer to solve systems with three or more characteristic fields, in order to avoid the excessive numerical dissipation of HLL for intermediate characteristic fields. Such numerical dissipation is particularly evident for slowly moving intermediate linear waves and for long evolution times. High-order accurate numerical methods can, to some extent, compensate for this shortcoming of HLL, but it is a costly remedy and for stationary or nearly stationary intermediate waves such compensation is very difficult to achieve in practice. It is therefore best to resolve the problem radically, at the first-order level, by choosing an appropriate numerical flux. The present paper is a review of the HLLC scheme, starting from some historical notes, going on to a description of the algorithm as applied to some typical hyperbolic systems, and ending with an overview of some of the most significant developments and applications in the last 25 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983). https://doi.org/10.1137/1025002

    Article  MathSciNet  MATH  Google Scholar 

  2. Toro, E.F.: The weighted average flux method applied to the Euler equations. Philos. Trans. R. Soc. Lond. Ser. A Phys. Sci. Eng. A341, 499–530 (1992). https://doi.org/10.1098/rsta.1992.0113

    Article  MathSciNet  MATH  Google Scholar 

  3. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL–Riemann solver. Technical Report CoA—9204, Department of Aerospace Science, College of Aeronautics, Cranfield Institute of Technology, UK (1992)

  4. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994). https://doi.org/10.1007/BF01414629

    Article  MATH  Google Scholar 

  5. Toro, E.F., Chakraborty, A.: Development of an approximate Riemann solver for the steady supersonic Euler equations. Aeronaut. J. 98, 325–339 (1994). https://doi.org/10.1017/S0001924000026890

    Article  Google Scholar 

  6. Fraccarollo, L., Toro, E.F.: Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J. Hydraul. Res. 33, 843–864 (1995). https://doi.org/10.1080/00221689509498555

    Article  Google Scholar 

  7. Batten, P., Clarke, N., Lambert, C., Causon, D.: On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Stat. Comput. 18, 1553–1570 (1997). https://doi.org/10.1137/S1064827593260140

    Article  MathSciNet  MATH  Google Scholar 

  8. Batten, P., Leschziner, M.A., Goldberg, U.C.: Average-state Jacobians and implicit methods for compressible viscous and turbulent flows. J. Comput. Phys. 137, 38–78 (1997). https://doi.org/10.1006/jcph.1997.5793

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, S.F.: Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comput. 9, 445–473 (1988). https://doi.org/10.1137/0909030

    Article  MathSciNet  MATH  Google Scholar 

  10. Einfeldt, B.: On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25(2), 294–318 (1988). https://doi.org/10.1137/0725021

    Article  MathSciNet  MATH  Google Scholar 

  11. Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991). https://doi.org/10.1016/0021-9991(91)90211-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Dumbser, M., Balsara, D.: A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304, 275–319 (2016). https://doi.org/10.1016/j.jcp.2015.10.014

    Article  MathSciNet  MATH  Google Scholar 

  13. Toro, E.F.: Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley, Chichester (2001)

    MATH  Google Scholar 

  14. Toro, E.F.: Brain venous haemodynamics, neurological diseases and mathematical modelling. A review. Appl. Math. Comput. 272, 542–579 (2016). https://doi.org/10.1016/j.amc.2015.06.066

    Article  MathSciNet  MATH  Google Scholar 

  15. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2009). https://doi.org/10.1007/b79761

    Book  MATH  Google Scholar 

  16. Liou, M.S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993). https://doi.org/10.1006/jcph.1993.1122

    Article  MathSciNet  MATH  Google Scholar 

  17. Toro, E.F., Vázquez-Cendón, M.E.: Flux splitting schemes for the Euler equations. Comput. Fluids 70, 1–12 (2012). https://doi.org/10.1016/j.compfluid.2012.08.023

    Article  MathSciNet  MATH  Google Scholar 

  18. Toro, E.F., Castro, C.E., Lee, B.J.: A novel numerical flux for the 3D Euler equations with general equation of state. J. Comput. Phys. 303, 80–94 (2015). https://doi.org/10.1016/j.jcp.2015.09.037

    Article  MathSciNet  MATH  Google Scholar 

  19. Tokareva, S.A., Toro, E.F.: A flux splitting method for the Baer–Nunziato equations of compressible two-phase flow. J. Comput. Phys. 323, 45–74 (2016). https://doi.org/10.1016/j.jcp.2016.07.019

    Article  MathSciNet  MATH  Google Scholar 

  20. Balsara, D.S., Montecinos, G.I., Toro, E.F.: Exploring various flux vector splittings for the magnetohydrodynamic system. J. Comput. Phys. 311, 1–21 (2016). https://doi.org/10.1016/j.jcp.2016.01.029

    Article  MathSciNet  MATH  Google Scholar 

  21. Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gasdynamic equations with applications to finite-difference methods. J. Comput. Phys. 40, 263–293 (1981). https://doi.org/10.1016/0021-9991(81)90210-2

    Article  MathSciNet  MATH  Google Scholar 

  22. van Leer, B.: Flux-vector splitting for the Euler equations. Technical Report ICASE 82–30, NASA Langley Research Center, USA (1982)

  23. Zha, G.-C., Bilgen, E.: Numerical solution of Euler equations by a new flux vector splitting scheme. Int. J. Numer. Methods Fluids 17, 115–144 (1993). https://doi.org/10.1002/fld.1650170203

    Article  MathSciNet  MATH  Google Scholar 

  24. Toro, E.F.: The Riemann problem: solvers and numerical fluxes. In: Abgrall, R., Shu, C.W. (eds.) Elsevier Handbook of Numerical Methods for Hyperbolic Problems. Chapter 2, vol. 17, pp. 19–54 (2016). https://doi.org/10.1016/bs.hna.2016.09.015

    Google Scholar 

  25. Godunov, S.K.: A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Sb. Math. 47, 357–393 (1959)

    Google Scholar 

  26. Toro, E.F.: Riemann problems and the WAF method for solving two-dimensional shallow water equations. Philos. Trans. R. Soc. Lond. Ser. A Phys. Sci. Eng. A338, 43–68 (1992). https://doi.org/10.1098/rsta.1992.0002

    Article  MathSciNet  MATH  Google Scholar 

  27. Formaggia, L., Quarteroni, A., Veneziani, A. (eds.): Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System. Springer, Berlin (2009). https://doi.org/10.1007/978-88-470-1152-6

    Book  MATH  Google Scholar 

  28. Müller, L.O., Toro, E.F.: A global multiscale model for the human circulation with emphasis on the venous system. Int. J. Numer. Methods Biomed. Eng. 30(7), 681–725 (2014). https://doi.org/10.1002/cnm.2622

    Article  MathSciNet  Google Scholar 

  29. Müller, L.O., Toro, E.F.: Enhanced global mathematical model for studying cerebral venous blood flow. J. Biomech. 47(13), 3361–3372 (2014). https://doi.org/10.1016/j.jbiomech.2014.08.005

    Article  Google Scholar 

  30. Safranov, A.V.: Difference method for gasdynamical equations based on the jump conditions. Math. Modell. 20, 76–84 (2008). (in Russian)

  31. Baer, M.R., Nunziato, J.W.: A Two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. J. Multiphase Flow 12, 861–889 (1986). https://doi.org/10.1016/0301-9322(86)90033-9

    Article  MATH  Google Scholar 

  32. Tokareva, S.A., Toro, E.F.: HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229, 3573–3604 (2010). https://doi.org/10.1016/j.jcp.2010.01.016

    Article  MathSciNet  MATH  Google Scholar 

  33. Gurski, K.F.: An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics. SIAM J. Sci. Comput. 25(6), 2165–2187 (2004). https://doi.org/10.1137/S1064827502407962

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, S.: An HLLC Riemann solver for magneto-hydrodynamics. J. Comput. Phys. 203(1), 344–357 (2005). https://doi.org/10.1016/j.jcp.2004.08.020

    Article  MathSciNet  MATH  Google Scholar 

  35. Mignone, A., Bodo, G.: An HLLC Riemann solver for relativistic flows - II. Magnetohydrodynamics. Mon. Not. R. Astron. Soc. 368(3), 1040–1054 (2006). https://doi.org/10.1111/j.1365-2966.2006.10162.x

    Article  Google Scholar 

  36. Bouchut, F., Klingenberg, C., Waagan, K.: A multiwave approximate Riemann solver for ideal MHD based on relaxation, I: theoretical framework. Numer. Math. 108(1), 7–42 (2007). https://doi.org/10.1007/s00211-007-0108-8

    Article  MathSciNet  MATH  Google Scholar 

  37. Klingenberg, C., Schmidt, W., Waagan, K.: Numerical comparison of Riemann solvers for astrophysical hydrodynamics. J. Comput. Phys. 227(1), 12–35 (2007). https://doi.org/10.1016/j.jcp.2007.07.034

    Article  MathSciNet  MATH  Google Scholar 

  38. Honkkila, V., Janhunen, P.: HLLC solver for ideal relativistic MHD. J. Comput. Phys. 223(2), 643–656 (2007). https://doi.org/10.1016/j.jcp.2006.09.027

    Article  MathSciNet  MATH  Google Scholar 

  39. Fetcher, S., Munz, C.D., Rohde, C., Zeiler, C.: Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension. Comput. Fluids 169, 169–185 (2018). https://doi.org/10.1016/j.compfluid.2017.03.026

    Article  MathSciNet  MATH  Google Scholar 

  40. Prebeg, M., FlĂĄtten, T., MĂĽller, B.: Large time step HLL and HLLC schemes. ESAIM: M2AN (2017). https://doi.org/10.1051/m2an/2017051

    Article  MathSciNet  Google Scholar 

  41. Pelanti, M.: Wave structure similarity of the HLLC and ROE Riemann solvers: application to low Mach number preconditioning. SIAM J. Sci. Comput. 40(3), A1836–A1859 (2018). https://doi.org/10.1137/17M1154965

    Article  MathSciNet  MATH  Google Scholar 

  42. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984). https://doi.org/10.1137/0721062

    Article  MathSciNet  MATH  Google Scholar 

  43. Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes I. SIAM J. Numer. Anal. 24(2), 279–309 (1987). https://doi.org/10.1137/0724022

    Article  MathSciNet  MATH  Google Scholar 

  44. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996). https://doi.org/10.1006/jcph.1996.0130

    Article  MathSciNet  MATH  Google Scholar 

  45. Balsara, D., Shu, C.W.: Monotonicity preserving weighted essentially nonoscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000). https://doi.org/10.1006/jcph.2000.6443

    Article  MathSciNet  MATH  Google Scholar 

  46. Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201(1), 238–260 (2004). https://doi.org/10.1016/j.jcp.2004.05.015

    Article  MathSciNet  MATH  Google Scholar 

  47. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221(2), 693–723 (2007). https://doi.org/10.1016/j.jcp.2006.06.043

    Article  MathSciNet  MATH  Google Scholar 

  48. Dumbser, M., Käser, M., Titarev, V.A., Toro, E.F.: Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 226(8), 204–243 (2007). https://doi.org/10.1016/j.jcp.2007.04.004

    Article  MathSciNet  MATH  Google Scholar 

  49. van der Vegt, J.J.W., van der Ven, H.: Space–time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. General formulation. J. Comput. Phys. 182(2), 546–585 (2002). https://doi.org/10.1006/jcph.2002.7185

    Article  MathSciNet  MATH  Google Scholar 

  50. Pesch, L., van der Vegt, J.J.W.: A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids. J. Comput. Phys. 227(11), 5426–5446 (2008). https://doi.org/10.1016/j.jcp.2008.01.046

    Article  MathSciNet  MATH  Google Scholar 

  51. Luo, H., Baum, J.D., Löhner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225(1), 686–713 (2007). https://doi.org/10.1016/j.jcp.2006.12.017

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, L., Mavriplis, D.J.: Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations. J. Comput. Phys. 225(2), 1994–2015 (2007). https://doi.org/10.1016/j.jcp.2007.03.002

    Article  MathSciNet  MATH  Google Scholar 

  53. Qiu, J., Khoo, B.C., Shu, C.W.: A numerical study for the performance of the Runge–Kutta discontinuous Galerkin method based on different numerical fluxes. J. Comput. Phys. 212(2), 540–565 (2006). https://doi.org/10.1016/j.jcp.2005.07.011

    Article  MathSciNet  MATH  Google Scholar 

  54. Capdeville, G.: Towards a compact high-order method for non-linear hyperbolic systems, II. The Hermite-HLLC scheme. J. Comput. Phys. 227(22), 9428–9462 (2008). https://doi.org/10.1016/j.jcp.2008.06.024

    Article  MathSciNet  MATH  Google Scholar 

  55. Harris, R., Wang, Z.J., Liu, Y.: Efficient quadrature-free high-order spectral volume method on unstructured grids: Theory and 2D. J. Comput. Phys. 227(3), 1620–1642 (2008). https://doi.org/10.1016/j.jcp.2007.09.012

    Article  MathSciNet  MATH  Google Scholar 

  56. Li, L., Liu, X., Lou, J., Luo, H., Nishikawa, H., Ren, Y.: A discontinuous Galerkin method based on variational reconstruction for compressible flows on arbitrary grids. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida, AIAA Paper 2018-0831 (2018). https://doi.org/10.2514/6.2018-0831

  57. Simon, S., Mandal, J.C.: A cure for numerical shock instability in HLLC Riemann solver using antidiffusion control. Comput. Fluids 174, 144–166 (2018). https://doi.org/10.1016/j.compfluid.2018.07.001

    Article  MathSciNet  MATH  Google Scholar 

  58. Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLLC Riemann solver for unstructured meshes—With application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014). https://doi.org/10.1016/j.jcp.2013.12.029

    Article  MathSciNet  MATH  Google Scholar 

  59. Ambati, V.R., Bokhove, O.: Space–time discontinuous Galerkin discretization of rotating shallow water equations. J. Comput. Phys. 225(2), 1233–1261 (2007). https://doi.org/10.1016/j.jcp.2007.01.036

    Article  MathSciNet  MATH  Google Scholar 

  60. Castro Díaz, M.J., Fernandez-Nieto, E.D., Morales de Luna, T., Narbona-Reina, G., Parés, C.: A HLLC scheme for non-conservative hyperbolic problems. Application to turbidity currents with sediment transport. ESAIM Math. Modell. Numer. Anal. 47(2), 1–32 (2013). https://doi.org/10.1051/m2an/2012017

    Article  MathSciNet  Google Scholar 

  61. Hosseinzadeh-Tabrizi, S.A., Ghaeini-Hessaroeyeh, M.: Application of bed load formulations for dam failure and overtopping. Civ. Eng. J. 3(10), 997–1007 (2017). https://doi.org/10.28991/cej-030932

    Article  Google Scholar 

  62. Ziaeddini-Dashtkhaki, M., Ghaeini-Hessaroeyeh, M.: Numerical simulation of tidal wave over wavy bed. J. Coast. Mar. Eng. 1(1), 7–12 (2018)

    Google Scholar 

  63. Wells, B.V., Baines, M.J., Glaister, P.: Generation of arbitrary Lagrangian–Eulerian (ALE) velocities, based on monitor functions, for the solution of compressible fluid equations. Int. J. Numer. Methods Fluids 47, 1375–1381 (2005). https://doi.org/10.1002/fld.915

    Article  MathSciNet  MATH  Google Scholar 

  64. Nemec, A., Aftosmis, M.J.: Adjoint sensitivity computations for an embedded-boundary Cartesian mesh method. J. Comput. Phys. 227(4), 2724–2742 (2008). https://doi.org/10.1016/j.jcp.2007.11.018

    Article  MathSciNet  MATH  Google Scholar 

  65. Ball, G.J., East, R.A.: Shock and blast attenuation by aqueous foam barriers: influences of barrier geometry. Shock Waves 9(1), 37–47 (1999). https://doi.org/10.1007/s001930050137

    Article  MATH  Google Scholar 

  66. Navarro-Martinez, S., Tutty, O.R.: Numerical simulation of Görtler vortices in hypersonic compression ramps. Comput. Fluids 34(2), 225–247 (2005). https://doi.org/10.1016/j.compfluid.2004.05.002

    Article  MATH  Google Scholar 

  67. Berthon, C., Charrier, P., Dubroca, B.: An HLLC scheme to solve The \(M_1\) model of radiative transfer in two space dimensions. J. Sci. Comput. 31(3), 347–389 (2007). https://doi.org/10.1007/s10915-006-9108-6

    Article  MathSciNet  MATH  Google Scholar 

  68. Berthon, C., Coquel, F., Hérard, J.M., Uhlmann, M.: An approximate solution of the Riemann problem for a realisable second-moment turbulent closure. Shock Waves 11(4), 245–269 (2002). https://doi.org/10.1007/s001930100109

    Article  MATH  Google Scholar 

  69. Gavrilyuk, S.L., Favrie, N., Saurel, R.: Modelling wave dynamics of compressible elastic materials. J. Comput. Phys. 227(5), 2941–2969 (2007). https://doi.org/10.1016/j.jcp.2007.11.030

    Article  MathSciNet  MATH  Google Scholar 

  70. Ohwada, T., Shibata, Y., Kato, T., Nakamura, T.: A simple, robust and efficient high-order accurate shock-capturing scheme for compressible flows: Towards minimalism. J. Comput. Phys. 362, 131–162 (2018). https://doi.org/10.1016/j.jcp.2018.02.019

    Article  MathSciNet  MATH  Google Scholar 

  71. White, J.A., Baurle, R.A., Passe, B.J., Spiegel, S.C., Nishikawa, H.: Geometrically flexible and efficient flow analysis of high speed vehicles via domain decomposition, Part 1: unstructured-grid solver for high speed flows. Conference: JANNAF 48th Combustion 36th Airbreathing Propulsion, pp. 1–22 (2017)

  72. Pantano, C., Saurel, R., Schmitt, T.: An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows. J. Comput. Phys. 335, 780–811 (2017). https://doi.org/10.1016/j.jcp.2017.01.057

    Article  MathSciNet  MATH  Google Scholar 

  73. Daude, F., Tijsseling, A.S., Galon, P.: Numerical investigations of water-hammer with column-separation induced by vaporous cavitation using a one-dimensional finite-volume approach. J. Fluids Struct. 83, 91–118 (2018). https://doi.org/10.1016/j.jfluidstructs.2018.08.014

    Article  Google Scholar 

  74. Sousa, J., Paniagua, G., Morata, E.C.: Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor. Appl. Energy 195, 247–256 (2017). https://doi.org/10.1016/j.apenergy.2017.03.045

    Article  Google Scholar 

  75. Knudsen, E., Doran, E.M., Mittal, V., Meng, J., Spurlock, W.: Compressible Eulerian needle-to-target large eddy simulations of a diesel fuel injector. Proc. Combust. Inst. 36(2), 2459–2466 (2017). https://doi.org/10.1016/j.proci.2016.08.016

    Article  Google Scholar 

  76. Garrick, D.P., Owkes, M., Regele, J.D.: A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension. J. Comput. Phys. 339, 46–67 (2017). https://doi.org/10.1016/j.jcp.2017.03.007

    Article  MathSciNet  MATH  Google Scholar 

  77. Fujisawa, K., Yamagata, T., Fujisawa, N.: Damping effect on impact pressure from liquid droplet impingement on wet wall. Ann. Nucl. Energy 121, 260–268 (2018). https://doi.org/10.1016/j.anucene.2018.07.008

    Article  Google Scholar 

  78. Godunov, S.K., Klyuchinskiy, D.V., Safronov, A.V., Fortova, S.V., Shepelev, V.V.: Experimental study of numerical methods for the solution of gas dynamics problems with shock waves. J. Phys.: Conf. Ser. 946, 012048 (2018). https://doi.org/10.1088/1742-6596/946/1/012048

    Google Scholar 

  79. Godunov, S.K., Klyuchinskii, D.V., Fortova, S.V., Shepelev, V.V.: Experimental studies of difference gas dynamics models with shock waves. Comput. Math. Math. Phys. 58(8), 1201–1216 (2018). https://doi.org/10.1134/S0965542518080067

    Article  MathSciNet  MATH  Google Scholar 

  80. Varma, D., Chandrashekar, P.: A second-order well-balanced finite volume scheme for Euler equations with gravity. Comput. Fluids 181, 292–313 (2019). https://doi.org/10.1016/j.compfluid.2019.02.003

    Article  MathSciNet  MATH  Google Scholar 

  81. Wilkinson, S.D., Braithwaite, M., Nikiforakis, N., Michael, L.: A complete equation of state for non-ideal condensed phase explosives. J. Appl. Phys. 122(22), 225112 (2017). https://doi.org/10.1063/1.5006901

    Article  Google Scholar 

  82. Goncalves, E., Hoarau, Y., Zeidan, D.: Simulation of shock-induced bubble collapse using a four-equation model. Shock Waves 29(1), 221–234 (2018). https://doi.org/10.1007/s00193-018-0809-1

    Article  Google Scholar 

  83. Thornber, B., Griffond, J., Poujade, O., Attal, N., Varshochi, H., Bigdelou, P., Ramaprabhu, P., Olson, B., Greenough, J., Zhou, Y., et al.: Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: The \(\theta \)-group collaboration. Phys. Fluids 29(10), 105107 (2017). https://doi.org/10.1063/1.4993464

    Article  Google Scholar 

  84. Joncquieres, V., Pechereau, F., Alvarez Laguna, A., Bourdon, A., Vermorel, O., Cuenot, B.: A 10-moment fluid numerical solver of plasma with sheaths in a Hall Effect Thruster. 2018 Joint Propulsion Conference, Cincinnati, Ohio, AIAA Paper 2018-4905 (2018). https://doi.org/10.2514/6.2018-4905

  85. Wermelinger, F., Rasthofer, U., Hadjidoukas, P.E., Koumoutsakos, P.: Petascale simulations of compressible flows with interfaces. J. Comput. Sci. 26, 217–225 (2018). https://doi.org/10.1016/j.jocs.2018.01.008

    Article  MATH  Google Scholar 

  86. Sangam, A.: An HLLC scheme for ten-moments approximation coupled with magnetic field. Int. J. Comput. Sci. Math. 2(1/2), 73–109 (2008). https://doi.org/10.1504/IJCSM.2008.019724

    Article  MathSciNet  MATH  Google Scholar 

  87. Singh, A.P.: A framework to improve turbulence models using full-field inversion and machine learning. PhD Thesis, Aerospace Engineering, The University of Michigan, USA (2018)

  88. Ritos, K., Kokkinakis, I.W., Drikakis, D., Spottswood, S.M.: Implicit large eddy simulation of acoustic loading in supersonic turbulent boundary layers. Phys. Fluids 29(4), 046101 (2017). https://doi.org/10.1063/1.4979965

    Article  Google Scholar 

  89. Walchli, B., Thornber, B.: Reynolds number effects on the single-mode Richtmyer–Meshkov instability. Phys. Rev. E 95(1), 013104 (2017). https://doi.org/10.1103/PhysRevE.95.013104

    Article  Google Scholar 

  90. Islam, A., Thornber, B.: A high-order hybrid turbulence model with implicit large-eddy simulation. Comput. Fluids 167, 292–312 (2018). https://doi.org/10.1016/j.compfluid.2018.03.031

    Article  MathSciNet  MATH  Google Scholar 

  91. Park, M.A., Barral, N., Ibanez, ., Kamenetskiy, D.S., Krakos, J.A., Michal, T.R., Loseille, A.: Unstructured grid adaptation and solver technology for turbulent flows. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida, AIAA Paper 2018-1103 (2018). https://doi.org/10.2514/6.2018-1103

  92. Pan, L., Padoan, P., Nordlund, Ă….: Detailed balance and exact results for density fluctuations in supersonic turbulence. Astrophys. J. Lett. 866, L17 (2018). https://doi.org/10.3847/2041-8213/aae57c

    Article  Google Scholar 

  93. Hahn, M., Drikakis, D.: Large eddy simulation of compressible turbulence using high-resolution methods. Int. J. Numer. Methods Fluids 47, 971–977 (2005). https://doi.org/10.1002/fld.882

    Article  MATH  Google Scholar 

  94. Kalveit, M., Drikakis, D.: Coupling strategies for hybrid molecular—continuum simulation methods. Proc. IMechE Part C J. Mech. Eng. Sci. 222, 797–806 (2008). https://doi.org/10.1243/09544062JMES716

    Article  Google Scholar 

  95. Hahn, M., Drikakis, D.: Implicit large-eddy simulation of swept wing flow using high-resolution methods. AIAA J. 47, 618–629 (2009). https://doi.org/10.2514/1.37806

    Article  Google Scholar 

  96. Pelanti, M.: Low Mach number preconditioning techniques for Roe-type and HLLC-type methods for a two-phase compressible flow model. Appl. Math. Comput. 310, 112–133 (2017). https://doi.org/10.1016/j.amc.2017.04.014

    Article  MathSciNet  MATH  Google Scholar 

  97. Saurel, R., Pantano, C.: Diffuse-interface capturing methods for compressible two-phase flows. Annu. Rev. Fluid Mech. 50, 105–130 (2018). https://doi.org/10.1146/annurev-fluid-122316-050109

    Article  MathSciNet  MATH  Google Scholar 

  98. Pan, S., Han, L., Hu, X., Adams, N.: A conservative sharp-interface method for compressible multi-material flows. J. Comput. Phys. 371, 870–895 (2018). https://doi.org/10.1016/j.jcp.2018.02.007

    Article  MathSciNet  MATH  Google Scholar 

  99. Daude, F., Galon, P.: A finite-volume approach for compressible single- and two-phase flows in flexible pipelines with fluid–structure interaction. J. Comput. Phys. 362, 375–408 (2018). https://doi.org/10.1016/j.jcp.2018.01.055

    Article  MathSciNet  MATH  Google Scholar 

  100. De Lorenzo, M.: Modelling and numerical simulation of metastable two-phase flows. PhD Thesis, Université Paris-Saclay (2018)

  101. De Lorenzo, M., Pelanti, M., Lafon, P.: HLLC-type and path-conservative schemes for a single-velocity six-equation two-phase flow model: A comparative study. Appl. Math. Comput. 333, 95–117 (2018). https://doi.org/10.1016/j.amc.2018.03.092

    Article  MathSciNet  MATH  Google Scholar 

  102. Zheng, H.W., Shu, C., Chew, Y.T.: An object-oriented and quadrilateral-mesh based solution adaptive algorithm for compressible multi-fluid flows. J. Comput. Phys. 227(14), 6895–6921 (2008). https://doi.org/10.1016/j.jcp.2008.03.037

    Article  MathSciNet  MATH  Google Scholar 

  103. Tan, X.G., Przekwas, A.J., Gupta, R.K.: Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury. Shock Waves 27, 889–904 (2017). https://doi.org/10.1007/s00193-017-0740-x

    Article  Google Scholar 

  104. Paxton, B., Schwab, J., Bauer, E.B., Bildsten, L., Blinnikov, S., Paul Duffell, R., Farmer, J.A., Goldberg, P.M., Sorokina, E., et al.: Modules for experiments in stellar astrophysics (MESA): Convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234(2), 34 (2018). https://doi.org/10.3847/1538-4365/aaa5a8

    Article  Google Scholar 

  105. Schneider, E.E., Robertson, B.E.: Hydrodynamical coupling of mass and momentum in multiphase galactic winds. Astrophys. J. 834(2), 144 (2017). https://doi.org/10.3847/1538-4357/834/2/144

    Article  Google Scholar 

  106. Trebitsch, M., Blaizot, J., Rosdahl, J., Devriendt, J., Slyz, A.: Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies. Mon. Not. R. Astron. Soc. 470(1), 224–239 (2017). https://doi.org/10.1093/mnras/stx1060

    Article  Google Scholar 

  107. Padnos, D., Mandelker, N., Birnboim, Y., Dekel, A., Krumholz, M.R., Steinberg, E.: Instability of supersonic cold streams feeding galaxies—II. Non-linear evolution of surface and body modes of Kelvin–Helmholtz instability. Mon. Not. R. Astron. Soc. 477(3), 2933–2968 (2018). https://doi.org/10.1093/mnras/sty789

    Article  Google Scholar 

  108. Radice, D., Burrows, A., Vartanyan, D., Skinner, M.A., Dolence, J.C.: Electron-capture and low-mass iron-core-collapse supernovae: New neutrino-radiation–hydrodynamics simulations. Astrophys. J. 850(1), 43 (2017). https://doi.org/10.3847/1538-4357/aa92c5

    Article  Google Scholar 

  109. Ohlmann, S.T., Röpke, F.K., Pakmor, R., Springel, V.: Constructing stable 3D hydrodynamical models of giant stars. Astron. Astrophys. 599, A5 (2017). https://doi.org/10.1051/0004-6361/201629692

    Article  Google Scholar 

  110. Rosdahl, J., Katz, H., Blaizot, J., Kimm, T., Michel-Dansac, L., Garel, T., Haehnelt, M., Ocvirk, P., Teyssier, R.: The SPHINX cosmological simulations of the first billion years: the impact of binary stars on reionization. Mon. Not. R. Astron. Soc. 479(1), 994–1016 (2018). https://doi.org/10.1093/mnras/sty1655

    Article  Google Scholar 

  111. Cielo, S., Bieri, R., Volonteri, M., Wagner, A.Y., Dubois, Y.: AGN feedback compared: jets versus radiation. Mon. Not. R. Astron. Soc. 477(1), 1336–1355 (2018). https://doi.org/10.1093/mnras/sty708

    Article  Google Scholar 

  112. Bambic, C.J., Morsony, B.J., Reynolds, C.S.: Suppression of AGN-driven turbulence by magnetic fields in a magnetohydrodynamic model of the intracluster medium. Astrophys. J. 857(2), 84 (2018). https://doi.org/10.3847/1538-4357/aab558

    Article  Google Scholar 

  113. Beckmann, R.S.: From seed to supermassive: simulating the origin, evolution and impact of massive black holes. PhD Thesis, University of Oxford (2017)

  114. Miranda-Aranguren, S., Aloy, M.A., Rembiasz, T.: An HLLC Riemann solver for resistive relativistic magnetohydrodynamics. Mon. Not. R. Astron. Soc. 476(3), 3837–3860 (2018). https://doi.org/10.1093/mnras/sty419

    Article  Google Scholar 

  115. Scannapieco, E., Safarzadeh, M.: Modeling star formation as a Markov process in a supersonic gravoturbulent medium. Astrophys. J. Lett. 865(2), L14 (2018). https://doi.org/10.3847/2041-8213/aae1f9

    Article  Google Scholar 

  116. Leroy, M.H.J., Keppens, R.: On the influence of environmental parameters on mixing and reconnection caused by the Kelvin–Helmholtz instability at the magnetopause. Phys. Plasmas 24(1), 012906 (2017). https://doi.org/10.1063/1.4974758

    Article  Google Scholar 

  117. Rasthofer, U., Wermelinger, F., Hadijdoukas, P., Koumoutsakos, P.: Large scale simulation of cloud cavitation collapse. Procedia Comput. Sci. 108, 1763–1772 (2017). https://doi.org/10.1016/j.procs.2017.05.158

    Article  Google Scholar 

  118. Navarro, A., Lora-Clavijo, F.D., González, G.A.: Magnus: A new resistive MHD code with heat flow terms. Astrophys. J. 844(1), 57 (2017). https://doi.org/10.3847/1538-4357/aa7a13

    Article  Google Scholar 

  119. Mignone, A.: MHD modeling: Aims, usage, scales assessed, caveats, codes. In: Torres, D. (ed.) Modelling Pulsar Wind Nebulae. Astrophysics and Space Science Library, vol. 446. Springer, Cham (2017)

    Chapter  Google Scholar 

  120. Ryan, G.: Numerical simulations of black hole accretion. PhD Thesis, New York University (2017)

  121. Suarez Noguez, T.: Understanding the distribution of gas in the Universe. PhD Thesis, UCL (University College London) (2018)

  122. Harpole, A.: Multiscale modelling of neutron star oceans. PhD Thesis, University of Southampton (2018)

  123. Takahiro, M., Kanya, K.: A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. 208(1), 315–344 (2005). https://doi.org/10.1016/j.jcp.2005.02.017

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the significant contribution of M.S. Liou to the field of computational methods for fluid dynamics and applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Toro.

Additional information

Communicated by H. Luo and C.-H. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toro, E.F. The HLLC Riemann solver. Shock Waves 29, 1065–1082 (2019). https://doi.org/10.1007/s00193-019-00912-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00912-4

Keywords

Navigation