Skip to main content
Log in

Recent progress in the theory and application of symplectic integrators

  • Session On Planetary Theories
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper various aspect of symplectic integrators are reviewed. Symplectic integrators are numerical integration methods for Hamiltonian systems which are designed to conserve the symplectic structure exactly as the original flow. There are explicit symplectic schemes for systems of the formH=T(p)+V(q), and implicit schemes for general Hamiltonian systems. As a general property, symplectic integrators conserve the energy quite well and therefore an artificial damping (excitation) caused by the accumulation of the local truncation error cannot occur. Symplectic integrators have been applied to the Kepler problem, the motion of minor bodies in the solar system and the long-term evolution of outer planets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abia, L. and Sanz-Serna, J.M.: 1990, ‘Partitioned Runge-Kutta methods for separable Hamiltonian problems’, Universidad de Valladolid, Applied Mathematics and Computation Reports1990/8

  • Auerbach, S.P. and Friedman, A.: 1991, ‘Long-time behaviour of numerically computed orbits: small and intermediate time step analysis of one-dimensional systems’,J. Comp. Phys. 93, 189–223

    Google Scholar 

  • Calvo, M.P. and Sanz-Serna, J.M: 1991, ‘Variable steps for symplectic integrators’, Universidad de Valladolid, Applied Mathematics and Computation Reports1991/3

  • Calvo, M.P. and Sanz-Serna, J.M: 1991a, ‘The development of variable-step symplectic integrators, with application to the two-body problem’, Universidad de Valladolid, Applied Mathematics and Computation Reports1991/9

  • Candy, J. and Rozmus, W.: 1991, ‘A symplectic integration algorithm for separable Hamiltonian functions’,J. Comp. Phys. 92, 230–256

    Google Scholar 

  • Channell, P.J. and Scovel, J.C.: 1990, ‘Symplectic integration of Hamiltonian systems’,Nonlinearity 3, 231–259

    Google Scholar 

  • Dekker, K. and Verwer, J.G.: 1984,Stability of Runge-Kutta methods for stiff nonlinear differential equations, North-Holland

  • Dragt, A.J. and Finn, J.M.: 1976, ‘Lie series and invariant functions for analytic symplectic maps’,J. Math. Phys. 17, 2215–2227

    Google Scholar 

  • Dragt, A.J., Neri, F., Rangarajan, G., Douglas, D.R., Healy, L.M. and Ryne, R.D.: 1988, ‘Lie algebraic treatment of linear and nonlinear beam dynamics’,Ann. Rev. Nucl. Part. Sci. 38, 455–496

    Google Scholar 

  • Eirola, T. and Sanz-Serna, J.M.: 1990, ‘Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods’, Universidad de Valladolid, Applied Mathematics and Computation Reports1990/9

  • Feng, K. and Qin, M.: 1987, ‘The symplectic methods for the computation of Hamiltonian equations’,Lecture Note in Math. 1297, 1–37

    Google Scholar 

  • Forest, E.: 1987, ‘Canonical integrators as tracking codes’, SSC Central Design Group Technical ReportSSC-138

  • Forest, E., Brengtsson, J. and Reusch M.F.: 1991, ‘Application of the Yoshida-Ruth techniques to implicit integration and multi-map explicit integration’,Phys. Lett. A 158, 99–101

    Google Scholar 

  • Forest, E. and Ruth, R.D.: 1990, ‘Fourth-order symplectic integration’,Physica D 43, 105–117

    Google Scholar 

  • Friedman, A. and Auerbach, S.P.: 1991, ‘Numerically induced stochasticity’,J. Comp. Phys. 93, 171–188

    Google Scholar 

  • Ge, Z. and Marsden, J.E.: 1988, ‘Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators’,Phys. Lett. A 133, 134–139

    Google Scholar 

  • Giacaglia, G.E.O.: 1972,Perturbation methods in non-linear systems, Springer

  • Gladman, B. and Duncan, M.: 1990, ‘On the fates of minor bodies in the outer solar system’,Astron. J. 100, 1680–1693

    Google Scholar 

  • Gladman, B., Duncan, M. and Candy, J.: 1991, ‘Symplectic integrators for long-term integrations in celestial mechanics’,Celest. Mech. 52, 221–240

    Google Scholar 

  • Greene, J.M.: 1979, ‘A method for determining a stochastic transition’,J. Math. Phys. 20, 1183–1201

    Google Scholar 

  • Gustavson, F.: 1966, ‘On constructing formal integrals of a Hamiltonian system near an equilibrium points’,Astron. J. 71, 670–686

    Google Scholar 

  • Itoh, T. and Abe, K.: 1988, ‘Hamiltonian-conserving discrete canonical equations based on variational difference quotients’,J. Comp. Phys. 77, 85–102

    Google Scholar 

  • Itoh, T. and Abe, K.: 1989, ‘Discrete Lagrange's equations and canonical equations based on the principle of least action’,Applied Math. Comp. 29, 161–183

    Google Scholar 

  • Kinoshita, H. and Nakai, H.: 1991, ‘New methods for long-time numerical integration of planetary orbits’, National Astronomical Observatory of Japan, preprint

  • Kinoshita, H., Yoshida, H. and Nakai, H.: 1991, ‘Symplectic integrators and their application to dynamical astronomy’,Celest. Mech. 50, 59–71

    Google Scholar 

  • Lasagni, F.: 1988, ‘Canonical Runge-Kutta methods’,ZAMP 39, 952–953

    Google Scholar 

  • MacKay, R.S.: 1991, ‘Some aspects of the dynamics and numerics of Hamiltonian systems’, University of Warwick, preprint

  • McLachlan, R. and Atela, P.: 1991, ‘The accuracy of symplectic integrators’,Nonlinearity 5, 541–562

    Google Scholar 

  • Mersman, W.A.: 1971, ‘Explicit recursive algorithms for the construction of equivalent canonical transformations’,Celest. Mech. 3, 384–389

    Google Scholar 

  • Neri, F.: 1987, ‘Lie algebras and canonical integration’, Dept. of Physics, University of Maryland, preprint

  • Okunbor, D. and Skeel, R.D.: 1991, ‘Explicit canonical methods for Hamiltonian systems’, Dept. of Computer Sci., Univ. of Illinois at Urbana-Champaign, preprint

  • Okunbor, D. and Skeel, R.D.: 1992, ‘An explicit Runge-Kutta-Nystrom method is canonical if and only if its adjoint is explicit’,SIAM J. Numer. Anal. 29,

  • Okunbor, D. and Skeel, R.D.: 1992a, ‘Canonical Runge-Kutta-Nystrom methods of order 5 and 6’, Dept. of Computer Sci., Univ. of Illinois at Urbana-Champaign, preprint

  • Pullin, D.I. and Saffman, P.G.: 1991, ‘Long time symplectic integration, the example of four-vortex motion’,Proc. R. Soc. London A 432, 481–494

    Google Scholar 

  • Quinlan, G.D. and Toomre, A.: 1991, ‘Resonant instabilities in symmetric multistep methods’, University of Toronto, preprint

  • Quinlan, G.D. and Tremaine, S.: 1990, ‘Symmetric multistep methods for the numerical integration of planetary orbits’,Astron. J. 100, 1694–1700

    Google Scholar 

  • Ruth, R.D.: 1983, ‘A canonical integration technique’,IEEE Trans. Nucl. Sci. NS-30, 2669–2671

    Google Scholar 

  • Saito, S., Sugiura, H. and Mitsui, T.: 1992, ‘Family of symplectic implicit Runge-Kutta formulae’, Dept. of information engineering, Nagoya university, preprint

  • Sanz-Serna, J.M.: 1988, ‘Runge-Kutta schemes for Hamiltonian systems’,BIT 28, 877–883

    Google Scholar 

  • Sanz-Serna, J.M.: 1991, ‘Symplectic integrators for Hamiltonian problems: an overview’, Universidad de Valladolid, Applied Mathematics and Computation Reports1991/6

  • Sanz-Serna, J.M. and Abia, L.: 1991, ‘Order conditions for canonical Runge-Kutta schemes’,SIAM J. Numer. Anal. 28, 1081–1096

    Google Scholar 

  • Scovel, C: 1991, ‘Symplectic numerical integration of Hamiltonian systems’, inThe geometry of Hamiltonian systems, Ratiu, T. ed., Springer, 463–496

  • Sussman, G.J. and Wisdom, J.: 1988, ‘Numerical evidence that the motion of Pluto is chaotic’,Science 241, 433–437

    Google Scholar 

  • Suzuki, M.: 1990, ‘Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations’,Phys. Lett. A 146, 319–323

    Google Scholar 

  • Suzuki, M.: 1991, ‘General theory of fractal path integrals with applications to many-body theories and statistical physics’,J. Math. Phys. 32, 400–407

    Google Scholar 

  • Suzuki, M.: 1992, ‘General theory of higher-order decomposition of exponential operators and symplectic integrators’, Dept. of Physics, University of Tokyo, preprint

  • Varadarajan, V.S.: 1974,Lie groups, Lie algebras and their representation, Prentice-Hall

  • Wisdom, J. and Holman, M.: 1991, ‘Symplectic maps for the N-body problem’,Astron. J. 102, 1528–1538

    Google Scholar 

  • Yoshida, H.: 1990, ‘Construction of higher order symplectic integrators’,Phys. Lett. A 150, 262–268

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, H. Recent progress in the theory and application of symplectic integrators. Celestial Mech Dyn Astr 56, 27–43 (1993). https://doi.org/10.1007/BF00699717

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00699717

Key words

Navigation