Skip to main content
Log in

Multiple Normalized Solutions to a Logarithmic Schrödinger Equation via Lusternik–Schnirelmann Category

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we will investigate the existence of multiple normalized solutions to the logarithmic Schrödinger equation given by

$$\begin{aligned} \left\{ \begin{aligned}&-\epsilon ^2 \Delta u+V( x)u=\lambda u+u \log u^2, \quad \quad \hbox {in }\mathbb {R}^N,\\&\int _{\mathbb {R}^{N}}|u|^{2}dx=a^{2}\epsilon ^N, \end{aligned} \right. \end{aligned}$$

where \(N\ge 1\), \(a, \epsilon >0, \lambda \in \mathbb {R}\) is an unknown parameter that appears as a Lagrange multiplier and \(V: \mathbb {R}^N \rightarrow (-1, +\infty )\) is a continuous function. Our analysis demonstrates that the number of normalized solutions of the equation is associated with the topology of the set where the potential function V attains its minimum value. To prove the main result, we employ minimization techniques and use the Lusternik-Schnirelmann category. Additionally, we introduce a new function space where the energy functional associated with the problem is of class \(C^1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Adams, A., Fournier, J.F.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)

    Google Scholar 

  2. Alves, C.O., da Silva, I.S.: Existence of multiple solutions for a Schrodinger logarithmic equation via Lusternik–Schnirelmann category. Anal. Appl. 21, 1477–1516 (2023)

    Article  MathSciNet  Google Scholar 

  3. Alves, C.O., de Morais Filho, D.C.: Existence of concentration of positive solutions for a Schrödinger logarithmic equation. Z. Angew. Math. Phys. 69, 144 (2018)

    Article  Google Scholar 

  4. Alves, C.O., de Morais Filho, D.C., Figueiredo, G.M.: On concentration of solution to a Schrödinger logarithmic equation with deepening potential well. Math. Methods Appl. Sci. 42, 4862–4875 (2019)

    Article  MathSciNet  Google Scholar 

  5. Alves, C.O., Ji, C.: Existence and concentration of positive solutions for a logarithmic Schrödinger equation via penalization method. Calc. Var. Partial Differ. Equ. 59, 27 (2020)

    Article  Google Scholar 

  6. Alves, C.O., Ji, C.: Multiple positive solutions for a Schrödinger logarithmic equation. Discret. Contin. Dyn. Syst. 40, 2671–2685 (2020)

    Article  Google Scholar 

  7. Alves, C.O., Ji, C.: Existence of a positive solution for a logarithmic Schrödinger equation with saddle-like potential. Manuscr. Math. 164, 555–575 (2021)

    Article  Google Scholar 

  8. Alves, C.O., Ji, C.: Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well. Sci. China Math. 65(8), 1577–1598 (2022)

    Article  MathSciNet  Google Scholar 

  9. OAlves, C., Ji, C.: Normalized solutions for the Schrödinger equations with \(L^{2}\)-subcritical growth and different types of potentials. J. Geom. Anal. 32, 165 (2022)

    Article  Google Scholar 

  10. Alves, C.O., Ji, C.: Multi-peak positive solutions for a logarithmic Schrödinger equation via variational methods. Israel J. Math. 259(2), 835–885 (2024)

  11. OAlves, C., Ji, C., Miyagaki, O.H.: Normalized solutions for a Schrödinger equation with critical growth in \({\mathbb{R} }^{N}\). Calc. Var. Partial Differ. Equ. 61, 18 (2022)

    Article  Google Scholar 

  12. Alves, C.O., Thin, N.V.: On existence of multiple normalized solutions to a class of elliptic problems in whole \(\mathbb{R} ^{N}\) via Lusternik-Schnirelmann category. SIAM J. Math. Anal. 55(2), 1264–1283 (2023)

    Article  MathSciNet  Google Scholar 

  13. Alves, C.O., Figueiredo, G.M.: Existence and multiplicity of positive solutions to a \(p\)-Laplacian equation in \(\mathbb{R} ^{N}\). Differ. Integr. Equ. 19, 143–162 (2006)

    Google Scholar 

  14. Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci. Sér. Math. 293(9), 489–492 (1981)

    MathSciNet  Google Scholar 

  15. Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. 7, 1127–1140 (1983)

    Article  MathSciNet  Google Scholar 

  16. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  Google Scholar 

  17. Cingolani, S., Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 10, 1–13 (1997)

    Article  MathSciNet  Google Scholar 

  18. Degiovanni, M., Zani, S.: Multiple solutions of semilinear elliptic equations with one-sided growth conditions, Nonlinear operator theory. Math. Comput. Model. 32, 1377–1393 (2000)

    Article  Google Scholar 

  19. d’Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16, 1350032 (2014)

    Article  MathSciNet  Google Scholar 

  20. Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on \(\mathbb{R} ^N\). Funkcial. Ekvac. 49, 235–267 (2006)

    Article  MathSciNet  Google Scholar 

  21. Ghoussoub, N.: Duality and Pertubation Methods in Critical Point Theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  22. Ikoma, N., Miyamoto, Y.: Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities. Calc. Var. Partial Differ. Equ. 59(2), 48 (2020)

    Article  Google Scholar 

  23. Ikoma, N., Miyamoto, Y.: The compactness of minimizing sequences for a nonlinear Schrödinger system with potentials. Commun. Contemp. Math. 25, 2150103 (2023)

    Article  Google Scholar 

  24. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  25. Jeanjean, L., Lu, S.-S.: On global minimizers for a mass constrained problem. Calc. Var. Partial Differ. Equ. 61, 214 (2022)

    Article  MathSciNet  Google Scholar 

  26. Lan, J., He, X., Meng, Y.: Normalized solutions for a critical fractional Choquard equation with a nonlocal perturbation. Adv. Nonlinear Anal. 12, 1–40 (2023)

    MathSciNet  Google Scholar 

  27. Li, Q., Zou, W.: The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the \(L^{2}\)-subcritical and \(L^{2}\)- supercritical cases. Adv. Nonlinear Anal. 11, 1531–1551 (2022)

    Article  MathSciNet  Google Scholar 

  28. Rao, M.N., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1985)

    Google Scholar 

  29. Shibata, M.: A new rearrangement inequality and its application for \(L^{2}\)-constraint minimizing problems. Math. Z. 287, 341–359 (2017)

    Article  MathSciNet  Google Scholar 

  30. Shuai, W.: Multiple solutions for logarithmic Schrödinger equations. Nonlinearity 32, 2201–2225 (2019)

    Article  MathSciNet  Google Scholar 

  31. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269(9), 6941–6987 (2020)

    Article  MathSciNet  Google Scholar 

  32. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279(6), 108610 (2020)

    Article  MathSciNet  Google Scholar 

  33. Squassina, M., Szulkin, A.: Multiple solution to logarithmic Schrödinger equations with periodic potential. Calc. Var. Partial Differ. Equ. 54, 585–597 (2015)

    Article  Google Scholar 

  34. Squassina, M., Szulkin, A.: Erratum to: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc. Var. Partial Differ. Equ. (2017). https://doi.org/10.1007/s00526-017-1127-7

    Article  Google Scholar 

  35. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–201 (1984)

    Article  MathSciNet  Google Scholar 

  36. Wang, Z.-Q., Zhang, C.X.: Convergence from power-law to logarithmic-law in nonlinear scalar field equations. Arch. Ration. Mech. Anal. 231, 45–61 (2019)

    Article  MathSciNet  Google Scholar 

  37. Willem, M.: Minimax Theorems. Birkhauser, Basel (1996)

    Book  Google Scholar 

  38. Zhang, C.X., Wang, Z.-Q.: Concentration of nodal solutions for logarithmic scalar field equations. J. Math. Pures Appl. 135, 1–25 (2020)

    Article  MathSciNet  Google Scholar 

  39. Zloshchastiev, K.G.: Logarithmic nonlinearity in the theories of quantum gravity: origin of time and observational consequences. Grav. Cosmol. 16, 288–297 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C.O. Alves was partially supported by CNPq/Brazil grant 304804/2017-7.

C. Ji was partially supported by National Natural Science Foundation of China (No. 12171152).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O., Ji, C. Multiple Normalized Solutions to a Logarithmic Schrödinger Equation via Lusternik–Schnirelmann Category. J Geom Anal 34, 198 (2024). https://doi.org/10.1007/s12220-024-01649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-024-01649-y

Keywords

Mathematics Subject Classification

Navigation