Skip to main content
Log in

Hydrogenation Synthesis of Sub-stoichiometric Tungsten Oxide (WOX) Nanoparticles and Its Superior Decompose Rhodamine B Behavior

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A metal-free, sub-stoichiometric tungsten oxide (WOX) photocatalyst has been successfully prepared by hydrogenating WO3 plasma nanoparticles at 425 °C. X-ray diffraction (XRD) analysis indicated that the photocatalyst comprised WO3 monoclinic, WO2.9, WO2.7, and WO2.0, depending on the reduction time. Their adsorption and photocatalytic activity on organic contaminants were evaluated by decomposing Rhodamine B (RhB). The prepared WOX demonstrated remarkable capabilities in decomposing 1.2 gL−1 Rhodamine B (RhB) compared to WO3 plasma NPs. WOX-120 exhibited the optimal catalytic performance, with the adsorption capacity for RhB at 174.9 mgg−1, 73 times greater than WO3 plasma NPs. WOX-60 exhibited the highest photodecomposition rate, with a k rate more than 90 times greater than that of WO3 plasma NPs. The investigation into active species in the photocatalytic reaction suggested that superoxide hydroxyl radicals (*OH) and photoinduced holes (h+) were the primary contributors. Furthermore, the photocatalytic degradation of RhB by the synthesized WOX showed improvement when Benzoquinone was introduced into the system as a scavenger, effectively capturing generated electrons and inhibiting their recombination with holes. This research showed the potential for metal-free semiconductor photocatalysts to efficiently remove various organic pollutants through adsorption and photocatalysis under visible light irradiation. Furthermore, the simple reduction process makes this material promising for large-scale catalyst and photocatalyst production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Benkhaya S, M’ rabet S, El Harfi A, (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun 115:107891. https://doi.org/10.1016/j.inoche.2020.107891

    Article  CAS  Google Scholar 

  2. Chung K-T (2016) Azo dyes and human health: A review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 34:233–261. https://doi.org/10.1080/10590501.2016.1236602

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Saigl ZM (2021) Various adsorbents for removal of rhodamine B dye: a review. Indones J Chem 21:1039

    Article  CAS  Google Scholar 

  4. Alguacil FJ, López FA (2021) Organic dyes versus adsorption processing. Molecules 26:5440. https://doi.org/10.3390/molecules26185440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J (2022) A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160. https://doi.org/10.1016/j.ecoenv.2021.113160

    Article  CAS  PubMed  Google Scholar 

  6. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  7. Byrne C, Subramanian G, Pillai SC (2018) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 6:3531–3555. https://doi.org/10.1016/j.jece.2017.07.080

    Article  CAS  Google Scholar 

  8. Wenderich K, Mul G (2016) Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem Rev 116:14587–14619. https://doi.org/10.1021/acs.chemrev.6b00327

    Article  CAS  PubMed  Google Scholar 

  9. Anwer H, Mahmood A, Lee J, Kim K-H, Park J-W, Yip ACK (2019) Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res 12:955–972. https://doi.org/10.1007/s12274-019-2287-0

    Article  CAS  Google Scholar 

  10. Dutta V, Sharma S, Raizada P, Thakur VK, Khan AAP, Saini V, Asiri AM, Singh P (2021) An overview on WO3 based photocatalyst for environmental remediation. J Environ Chem Eng 9:105018. https://doi.org/10.1016/j.jece.2020.105018

    Article  CAS  Google Scholar 

  11. Wu C-M, Naseem S, Chou M-H, Wang J-H, Jian Y-Q (2019) Recent advances in tungsten-oxide-based materials and their applications. Front Mater. https://doi.org/10.3389/fmats.2019.00049

    Article  Google Scholar 

  12. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC (2020) An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res 27:2522–2565. https://doi.org/10.1007/s11356-019-07193-5

    Article  CAS  Google Scholar 

  13. Arutanti O, Nandiyanto ABD, Ogi T, Iskandar F, Kim TO, Okuyama K (2014) Synthesis of composite WO3/TiO2 nanoparticles by flame-assisted spray pyrolysis and their photocatalytic activity. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2013.12.218

    Article  Google Scholar 

  14. Arutanti O, Nandiyanto ABD, Ogi T, Kim TO, Okuyama K (2015) Influences of Porous Structurization and Pt Addition on the Improvement of Photocatalytic Performance of WO 3 Particles. ACS Appl Mater Interfaces 7:3009–3017. https://doi.org/10.1021/am507935j

    Article  CAS  PubMed  Google Scholar 

  15. Anfar Z, Zbair M, Ahsaine HA, Ezahri M, El AN (2018) Well-designed WO3 /Activated carbon composite for Rhodamine B Removal: Synthesis, characterization, and modeling using response surface methodology. Fullerenes, Nanotub Carbon Nanostructures 26:389–397. https://doi.org/10.1080/1536383X.2018.1440386

    Article  ADS  CAS  Google Scholar 

  16. Chen Q, Lou S, Wang Y, Zhou S (2023) Red blood cell-like hollow TiO2@WO3 microspheres as highly efficient photocatalysts for degradation of organic pollutants. Inorg Chem Commun 148:110307

    Article  CAS  Google Scholar 

  17. Cuong LM, Duc BH, Van TP, Mai NTT, Chinh HD, Tu NC, Anh LTL (2021) Kinetics and adsorption model of methylene blue on g-C3N4@WO3·H2O nanoplate composite. Int J Nanosci. https://doi.org/10.1142/S0219581X21500459

    Article  Google Scholar 

  18. Qamar M, Fawakhiry MO, Azad A-M, Ahmed MI, Khan A, Saleh TA (2016) Selective photocatalytic oxidation of aromatic alcohols into aldehydes by tungsten blue oxide (TBO) anchored with Pt nanoparticles. RSC Adv 6:71108–71116. https://doi.org/10.1039/C6RA11841K

    Article  ADS  CAS  Google Scholar 

  19. Chen J, Qin C, Mou Y, Cao Y, Chen H, Yuan X, Wang H (2023) Linker regulation of iron-based MOFs for highly effective Fenton-like degradation of refractory organic contaminants. Chem Eng J 459:141588. https://doi.org/10.1016/j.cej.2023.141588

    Article  CAS  Google Scholar 

  20. Dong P, Hou G, Xi X, Shao R, Dong F (2017) WO3 -based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ Sci Nano 4:539–557. https://doi.org/10.1039/C6EN00478D

    Article  CAS  Google Scholar 

  21. Bhavsar KS, Labhane PK, Huse VR, Dhake RB, Sonawane GH (2020) Activated carbon immobilized WO3 nanocuboids: Adsorption/photocatalysis synergy for the enhanced removal of organic pollutants. Inorg Chem Commun 121:108215. https://doi.org/10.1016/j.inoche.2020.108215

    Article  CAS  Google Scholar 

  22. El maguana Y, Elhadiri N, Benchanaa M, Chikri R, (2020) Activated carbon for dyes removal: modeling and understanding the adsorption process. J Chem 2020:1–9. https://doi.org/10.1155/2020/2096834

    Article  CAS  Google Scholar 

  23. Ge J, Zhang Y, Park SJ (2019) Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: A mini review. Materials 12:1916

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shang Y, Cheng X, Shi R, Ma Q, Wang Y, Yang P (2020) Synthesis and comparative investigation of adsorption capability and photocatalytic activities of WO3 and W18O49. Mater Sci Eng B 262:114724. https://doi.org/10.1016/j.mseb.2020.114724

    Article  CAS  Google Scholar 

  25. Zhu J, Wang S, Xie S, Li H (2011) Hexagonal single crystal growth of WO3 nanorods along a [110] axis with enhanced adsorption capacity. Chem Commun 47:4403. https://doi.org/10.1039/c1cc00064k

    Article  CAS  Google Scholar 

  26. Bhavani P, Kumar DP, Hussain M, Jeon K-J, Park Y-K (2022) Recent advances in wide solar spectrum active W18O49-based photocatalysts for energy and environmental applications. Catal Rev. https://doi.org/10.1080/01614940.2022.2038472

    Article  Google Scholar 

  27. Xu M, Jia S, Li H, Zhang Z, Guo Y, Chen C, Chen S, Yan J, Zhao W, Yun J (2018) In-situ growth of W18O49@carbon clothes for flexible-easy-recycled photocatalysts with high performance. Mater Lett 230:224–227. https://doi.org/10.1016/j.matlet.2018.07.100

    Article  CAS  Google Scholar 

  28. Shen Z, Zhao Z, Qian J, Peng Z, Fu X (2016) Synthesis of WO3−x nanomaterials with controlled morphology and composition for highly efficient photocatalysis. J Mater Res 31:1065–1076. https://doi.org/10.1557/jmr.2016.106

    Article  ADS  CAS  Google Scholar 

  29. Li J, Liu X, Han Q, Yao X, Wang X (2013) Formation of WO3 nanotube-based bundles directed by NaHSO4 and its application in water treatment. J Mater Chem A 1:1246–1253. https://doi.org/10.1039/C2TA00382A

    Article  CAS  Google Scholar 

  30. Chen J, Ren Y, Hu T, Xu T, Xu Q (2019) Fabrication and application of substoichiometric tungsten oxide with tunable localized surface plasmon resonances. Appl Surf Sci 465:517–525

    Article  ADS  CAS  Google Scholar 

  31. Liu Z, Zhang F, Li C, Inoue C (2022) Enhanced visible light response and characterization of nanoscale TiO2/WO3−x composite photocatalyst by sol–gel synthesis. Catal Letters. https://doi.org/10.1007/s10562-022-04079-z

    Article  PubMed  Google Scholar 

  32. Chatten R, Chadwick AV, Rougier A, Lindan PJD (2005) The oxygen vacancy in crystal phases of WO3. J Phys Chem B 109:3146–3156. https://doi.org/10.1021/jp045655r

    Article  CAS  PubMed  Google Scholar 

  33. Boruah PJ, Khanikar RR, Bailung H (2020) Synthesis and characterization of oxygen vacancy induced narrow bandgap tungsten oxide (WO3−x) nanoparticles by plasma discharge in liquid and its photocatalytic activity. Plasma Chem Plasma Process 40:1019–1036. https://doi.org/10.1007/s11090-020-10073-3

    Article  CAS  Google Scholar 

  34. Piszcz M, Tryba B, Grzmil B, Morawski AW (2009) Photocatalytic removal of phenol under UV irradiation on WOx–TiO2 prepared by Sol-Gel Method. Catal Letters 128:190–196. https://doi.org/10.1007/s10562-008-9730-z

    Article  CAS  Google Scholar 

  35. Rinaldi FG, Arutanti O, Arif AF, Hirano T, Ogi T, Okuyama K (2018) Correlations between reduction degree and catalytic properties of WO x nanoparticles. ACS Omega 3:8963–8970. https://doi.org/10.1021/acsomega.8b01110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang J, Liu Y, Xi X, Nie Z (2022) Microwave-assisted synthesis of hierarchical WO3·H2O and its selective adsorption: kinetics, isotherm and mechanism. J Mater Sci 57:6881–6899. https://doi.org/10.1007/s10853-022-06981-8

    Article  ADS  CAS  Google Scholar 

  37. Putri RA, Tursiloadi S, Nurrahmah EF, Liandi AR, Arutanti O (2023) Synthesis of TiO2-based photocatalyst from indonesia ilmenite ore for photodegradation of eriochrome Black-T Dye. Water Air Soil Pollut. https://doi.org/10.1007/s11270-023-06584-2

    Article  Google Scholar 

  38. Springsteen A (2001) Colour and the optical properties of materials. Color Res Appl 26:103–103

    Article  Google Scholar 

  39. Zhang L, Wang H, Liu J, Zhang Q, Yan H (2020) Nonstoichiometric tungsten oxide: structure, synthesis, and applications. J Mater Sci Mater Electron 31:861–873. https://doi.org/10.1007/s10854-019-02596-z

    Article  CAS  Google Scholar 

  40. Bandi S, Srivastav AK (2021) Review: Oxygen-deficient tungsten oxides. J Mater Sci 56:6615–6644. https://doi.org/10.1007/s10853-020-05757-2

    Article  ADS  CAS  Google Scholar 

  41. Subhiksha V, Kokilavani S, Sudheer Khan S (2022) Recent advances in degradation of organic pollutant in aqueous solutions using bismuth based photocatalysts: A review. Chemosphere 290:133228. https://doi.org/10.1016/j.chemosphere.2021.133228

    Article  CAS  PubMed  Google Scholar 

  42. Mulliken RS (1934) A new electroaffinity scale; Together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys. https://doi.org/10.1063/1.1749394

    Article  Google Scholar 

  43. Mulliken RS (1935) Electronic structures of molecules XI. Electroaffinity, molecular orbitals and dipole moments. J Chem Phys. https://doi.org/10.1063/1.1749731

    Article  Google Scholar 

  44. Tang X, Huang J, Liao H, Chen G, Mo Z, Ma D, Zhan R, Li Y, Luo J (2019) Growth of W18O49/WO:X/W dendritic nanostructures by one-step thermal evaporation and their high-performance photocatalytic activities in methyl orange degradation. CrystEngComm. https://doi.org/10.1039/c9ce01047e

    Article  Google Scholar 

  45. Liu T, Wang L, Lu X, Fan J, Cai X, Gao B, Miao R, Wang J, Lv Y (2017) Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways. RSC Adv. https://doi.org/10.1039/c7ra00199a

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI Grant Numbers 2670901 and 16K13642. Thank you to Annete Gabriella Nuraliya for research assisting during the review process.

Funding

This article was funded by Japan Society for the Promotion of Science, 16K13642, 2670901.

Author information

Authors and Affiliations

Authors

Contributions

Osi A: Conceptualization, data curation, methodology, investigation, original draft, writing & editing; Aditya FA: review & editing; Takashi O: review & editing; Kikuo O: supervising, review & editing.

Corresponding author

Correspondence to Osi Arutanti.

Ethics declarations

Conflict of Interest

No conflict of interest for each contributing authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 79 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutanti, O., Arif, A.F., Ogi, T. et al. Hydrogenation Synthesis of Sub-stoichiometric Tungsten Oxide (WOX) Nanoparticles and Its Superior Decompose Rhodamine B Behavior. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04596-z

Keywords

Navigation