Skip to main content
Log in

Synthesis and Characterization of Oxygen Vacancy Induced Narrow Bandgap Tungsten Oxide (WO3−x) Nanoparticles by Plasma Discharge in Liquid and Its Photocatalytic Activity

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Narrow bandgap tungsten oxide (WO3−x) nanoparticles have been synthesized by single-step plasma discharge in deionized water between two vertically pointed tungsten electrodes. Bombardment of energetic electrons on the as-formed nanoparticles in the plasma zone creates defect states. Formation of electron-rich oxygen vacancies on the crystal planes and grain boundary defects have been investigated. The peak shift and broadening in the Raman and FTIR spectra indicate the formation of oxygen vacancies and sub-stoichiometric WO3 nanoparticles. EDX analysis provides the ratio of tungsten to oxygen to be around 1:2.4. Optical bandgap has been found to be 2.15 eV, which is less than the bulk value of 2.54 eV. Observation of higher amount of defect states from TEM and XPS provides the reason for the formation of narrow bandgap tungsten oxide nanoparticles. The photocatalytic efficiency of the plasma synthesize WO3−x nanoparticles is found to be higher than that of commercial bulk and nano WO3 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sano N, Wang H, Chhowalla M et al (2001) Synthesis of carbon ‘onions’ in water. Nature 414:506–507. https://doi.org/10.1038/35107141

    Article  CAS  PubMed  Google Scholar 

  2. Tien D, Tseng K, Liao C, Tsung T (2009) Identification and quantification of ionic silver from colloidal silver prepared by electric spark discharge system and its antimicrobial potency study. J Alloys Compd 473:298–302. https://doi.org/10.1016/j.jallcom.2008.05.063

    Article  CAS  Google Scholar 

  3. Hattori Y, Nomura S, Mukasa S et al (2013) Synthesis of tungsten oxide, silver, and gold nanoparticles by radio frequency plasma in water. J Alloys Compd 578:148–152. https://doi.org/10.1016/j.jallcom.2013.05.032

    Article  CAS  Google Scholar 

  4. Magureanu M, Piroi D, Gherendi F et al (2008) Decomposition of methylene blue in water by corona discharges. Plasma Chem Plasma Process 28:677–688. https://doi.org/10.1007/s11090-008-9155-x

    Article  CAS  Google Scholar 

  5. Horikoshi S, Serpone N (2017) In-liquid plasma: a novel tool in the fabrication of nanomaterials and in the treatment of wastewaters. RSC Adv 7:47196–47218. https://doi.org/10.1039/C7RA09600C

    Article  CAS  Google Scholar 

  6. Lukes P, Locke BR (2005) Plasmachemical oxidation processes in a hybrid gas–liquid electrical discharge reactor. J Phys D Appl Phys 38:4074–4081. https://doi.org/10.1088/0022-3727/38/22/010

    Article  CAS  Google Scholar 

  7. Pardeshi SK, Patil AB (2008) A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Sol Energy 82:700–705. https://doi.org/10.1016/j.solener.2008.02.007

    Article  CAS  Google Scholar 

  8. Liu Y, Ohko Y, Zhang R et al (2010) Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light. J Hazard Mater 184:386–391. https://doi.org/10.1016/j.jhazmat.2010.08.047

    Article  CAS  PubMed  Google Scholar 

  9. Zhu LF, She JC, Luo JY et al (2010) Study of physical and chemical processes of H2 sensing of pt-coated WO3 nanowire films. J Phys Chem C 114:15504–15509. https://doi.org/10.1021/jp106460w

    Article  CAS  Google Scholar 

  10. Zheng H, Tachibana Y, Kalantar-zadeh K (2010) Dye-sensitized solar cells based on WO3. Langmuir 11:19148–19152. https://doi.org/10.1021/la103692y

    Article  CAS  Google Scholar 

  11. AbuMousa RA, Baig U, Gondal MA et al (2018) Photo-catalytic killing of HeLa cancer cells using facile synthesized pure and Ag loaded WO3 nanoparticles. Sci Rep 8:15224. https://doi.org/10.1038/s41598-018-33434-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lung JK, Huang JC, Tien DC et al (2007) Preparation of gold nanoparticles by arc discharge in water. J Alloys Compd 434–435:655–658. https://doi.org/10.1016/j.jallcom.2006.08.213

    Article  CAS  Google Scholar 

  13. Zhou Y, Yu SH, Cui XP et al (1999) Formation of silver nanowires by a novel solid–liquid phase arc discharge method. Chem Mater 11:545–546. https://doi.org/10.1021/cm981122h

    Article  Google Scholar 

  14. Pootawang P, Saito N, Takai O, Lee SY (2012) Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing. Nanotechnology 23:395602. https://doi.org/10.1088/0957-4484/23/39/395602

    Article  CAS  PubMed  Google Scholar 

  15. Ishigami M, Cumings J, Zettl A, Chen S (2000) A simple method for the continuous production of carbon nanotubes. Chem Phys Lett 319:457–459. https://doi.org/10.1016/S0009-2614(00)00151-2

    Article  CAS  Google Scholar 

  16. Wang CY, Zhou Y, Mo X et al (2000) Synthesis of Fe3O4 powder by a novel arc discharge method. Mater Res Bull 35:755–759. https://doi.org/10.1016/S0025-5408(00)00271-3

    Article  CAS  Google Scholar 

  17. Zhou Y, Liu HJ, Yu SH et al (1999) Preparation of nanocrystalline silver by the method of liquid–solid arc discharge combined with hydrothermal treatment. Mater Res Bull 34:1683–1688. https://doi.org/10.1016/S0025-5408(99)00169-5

    Article  CAS  Google Scholar 

  18. Jin S, Kim S-M, Lee S, Kim J (2014) Synthesis and characterization of silver nanoparticles using a solution plasma process. J Nanosci Nanotechnol 14:8094–8097. https://doi.org/10.1166/jnn.2014.9428

    Article  CAS  PubMed  Google Scholar 

  19. Ashkarran AA, Zad AI, Ahadian MM, Ardakani SAM (2008) Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge method in deionized water. Nanotechnology 19:195709. https://doi.org/10.1088/0957-4484/19/19/195709

    Article  CAS  PubMed  Google Scholar 

  20. Hattori Y, Nomura S, Mukasa S et al (2013) Synthesis of tungsten trioxide nanoparticles by microwave plasma in liquid and analysis of physical properties. J Alloys Compd 560:105–110. https://doi.org/10.1016/j.jallcom.2013.01.137

    Article  CAS  Google Scholar 

  21. Koffyberg FP, Dwight K, Wold A (1979) Interband transitions of semiconducting oxides determined from photoelectrolysis spectra. Solid State Commun 30:433–437. https://doi.org/10.1016/0038-1098(79)91182-7

    Article  CAS  Google Scholar 

  22. Bamwenda GR, Arakawa H (2001) The visible light induced photocatalytic activity of tungsten trioxide powders. Appl Catal A Gen 210:181–191. https://doi.org/10.1016/S0926-860X(00)00796-1

    Article  CAS  Google Scholar 

  23. Hirose T (1980) Structural phase transitions and semiconductor-metal transition in WO3. J Phys Soc Jpn 49:562–568. https://doi.org/10.1143/JPSJ.49.562

    Article  CAS  Google Scholar 

  24. Smith W, Zhang Z-Y, Zhao Y-P (2007) Structural and optical characterization of WO3 nanorods/films prepared by oblique angle deposition. J Vac Sci Technol B 25:1875–1881. https://doi.org/10.1116/1.2799968

    Article  CAS  Google Scholar 

  25. Sivakumar R, Gopalakrishnan R, Jayachandran M, Sanjeeviraja C (2007) Preparation and characterization of electron beam evaporated WO3 thin films. Opt Mater (Amst) 29:679–687. https://doi.org/10.1016/j.optmat.2005.11.017

    Article  CAS  Google Scholar 

  26. Li N, Du K, Liu G et al (2013) Effects of oxygen vacancies on the electrochemical performance of tin oxide. J Mater Chem A 1:1536–1539. https://doi.org/10.1039/c2ta01012g

    Article  CAS  Google Scholar 

  27. Diebold U, Madey TE (1994) Supression of electron-induced positive ion emission by a molecular overlayer: ion-molecule charge exchange at a surface. Phys Rev Lett 72:1116–1119. https://doi.org/10.1103/PhysRevLett.72.1116

    Article  CAS  PubMed  Google Scholar 

  28. Bringans R, Höchst H, Shanks H (1981) Defect states on the surface of WO3. Vacuum 31:473–475. https://doi.org/10.1016/0042-207X(81)90041-5

    Article  CAS  Google Scholar 

  29. Wang J, Wang Z, Huang B et al (2012) Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl Mater Interfaces 4:4024–4030. https://doi.org/10.1021/am300835p

    Article  CAS  PubMed  Google Scholar 

  30. Pan X, Yang MQ, Fu X et al (2013) Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5:3601–3614. https://doi.org/10.1039/c3nr00476g

    Article  CAS  PubMed  Google Scholar 

  31. Ansari SA, Khan MM, Kalathil S et al (2013) Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale 5:9238–9246. https://doi.org/10.1039/c3nr02678g

    Article  CAS  PubMed  Google Scholar 

  32. Yu W, Shen Z, Peng F et al (2019) Improving gas sensing performance by oxygen vacancies in sub-stoichiometric WO3–x. RSC Adv 9:7723–7728. https://doi.org/10.1039/c9ra00116f

    Article  CAS  Google Scholar 

  33. Niklasson GA, Berggren L, Larsson AL (2004) Electrochromic tungsten oxide: the role of defects. Sol Energy Mater Sol Cells 84:315–328. https://doi.org/10.1016/j.solmat.2004.01.045

    Article  CAS  Google Scholar 

  34. Liu Q, Wang F, Lin H et al (2018) Surface oxygen vacancy and defect engineering of WO3 for improved visible light photocatalytic performance. Catal Sci Technol 8:4399–4406. https://doi.org/10.1039/c8cy00994e

    Article  CAS  Google Scholar 

  35. Luo JY, Xu NS, Zhao FL et al (2011) Ultraviolet superfluorescence from oxygen vacancies in WO3−x nanowires at room temperature. J Appl Phys 109:024312. https://doi.org/10.1063/1.3514078

    Article  CAS  Google Scholar 

  36. Fridman A, Gutsol A, Cho YI (2007) Non-thermal atmospheric pressure plasma. Adv Heat Transf 40:1–142. https://doi.org/10.1016/S0065-2717(07)40001-6

    Article  CAS  Google Scholar 

  37. Fridman A (2008) Plasma chemistry, 1st edn. Cambridge University Press, New York

    Book  Google Scholar 

  38. Sunka P, Babicky V, Clupek M et al (1999) Generation of chemically active species by electrical discharges in water. Plasma Sources Sci Technol 8:258–265. https://doi.org/10.1088/0963-0252/8/2/006

    Article  CAS  Google Scholar 

  39. Parkansky N, Glikman L, Beilis II et al (2007) W–C electrode erosion in a pulsed arc submerged in liquid. Plasma Chem Plasma Process 27:789–797. https://doi.org/10.1007/s11090-007-9099-6

    Article  CAS  Google Scholar 

  40. Venger R, Tmenova T, Valensi F et al (2017) Detailed investigation of the electric discharge plasma between copper electrodes immersed into water. Atoms 5:40. https://doi.org/10.3390/atoms5040040

    Article  CAS  Google Scholar 

  41. Ahmed MW, Rahman MS, Choi S et al (2017) Measurement of electron temperature and number density and their effects on reactive species formation in a DC underwater capillary discharge. Appl Sci Converg Technol 26:118–128. https://doi.org/10.5757/asct.2017.26.5.118

    Article  Google Scholar 

  42. Šunka P (2001) Pulse electrical discharges in water and their applications. Phys Plasmas 8:2587–2594. https://doi.org/10.1063/1.1356742

    Article  CAS  Google Scholar 

  43. Hayashi H, Akamine S, Ichiki R, Kanazawa S (2016) Comparison of OH radical concentration generated by underwater discharge using two methods. Int J Plasma Environ Sci Technol 10:24–28

    Google Scholar 

  44. Sahni M, Locke BR (2006) Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors. Ind Eng Chem Res 45:5819–5825. https://doi.org/10.1021/ie0601504

    Article  CAS  Google Scholar 

  45. Fang X, Mark G, Von Sonntag C (1996) OH radical formation by ultrasound in aqueous solutions: part I: the chemistry underlying the terephthalate dosimeter. Ultrason Sonochem 3:57–63. https://doi.org/10.1016/1350-4177(95)00032-1

    Article  CAS  Google Scholar 

  46. Chatten R, Chadwick AV, Rougier A, Lindan PJD (2005) The oxygen vacancy in crystal phases of WO3. J Phys Chem B 109:3146–3156. https://doi.org/10.1021/jp045655r

    Article  CAS  PubMed  Google Scholar 

  47. Shukla S, Chaudhary S, Umar A et al (2014) Tungsten oxide (WO3) nanoparticles as scaffold for the fabrication of hydrazine chemical sensor. Sens Actuators B 196:231–237. https://doi.org/10.1016/j.snb.2014.02.016

    Article  CAS  Google Scholar 

  48. Daniel MF, Desbat B, Lassegues JC et al (1987) Infrared and Raman study of WO3 tungsten trioxides and WO3xH2O tungsten trioxide hydrates. J Solid State Chem 67:235–247. https://doi.org/10.1016/0022-4596(87)90359-8

    Article  CAS  Google Scholar 

  49. Yan J, Wang T, Wu G et al (2015) Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv Mater 27:1580–1586. https://doi.org/10.1002/adma.201404792

    Article  CAS  PubMed  Google Scholar 

  50. Anderson A (1976) Raman study of ceramic tungsten trioxide at low temperatures. Spectrosc Lett 9:809–819. https://doi.org/10.1080/00387017608067471

    Article  CAS  Google Scholar 

  51. Souza-Filho AG, Freire VN, Sasaki JM et al (2000) Coexistence of triclinic and monoclinic phases in WO3 ceramics. J Raman Spectrosc 31:451–454. https://doi.org/10.1002/1097-4555(200006)31:63.0.CO;2-K

    Article  CAS  Google Scholar 

  52. Jothivenkatachalam K, Prabhu S, Nithya A, Jeganathan K (2014) Facile synthesis of WO3 with reduced particle size on zeolite and enhanced photocatalytic activity. RSC Adv 4:21221–21229. https://doi.org/10.1039/c4ra01376j

    Article  CAS  Google Scholar 

  53. Liu F, Chen X, Xia Q et al (2015) Ultrathin tungsten oxide nanowires: oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties. RSC Adv 5:77423–77428. https://doi.org/10.1039/c5ra12993a

    Article  CAS  Google Scholar 

  54. Huo N, Yang S, Wei Z, Li J (2013) Synthesis of WO3 nanostructures and their ultraviolet photoresponse properties. J Mater Chem C 1:3999–4007. https://doi.org/10.1039/c3tc30527a

    Article  CAS  Google Scholar 

  55. Djaoued Y, Balaji S, Brüning R (2012) Electrochromic devices based on porous tungsten oxide thin films. J Nanomater 2012:674168. https://doi.org/10.1155/2012/674168

    Article  CAS  Google Scholar 

  56. Rougier A, Portemer F, Quede A, El MM (1999) Characterization of pulsed laser deposited WO3 thin films for electrochromic devices. Appl Surf Sci 153:1–9. https://doi.org/10.1016/S0169-4332(99)00335-9

    Article  CAS  Google Scholar 

  57. Sadighi Z, Huang J, Qin L et al (2017) Positive role of oxygen vacancy in electrochemical performance of CoMn2O4 cathodes for Li–O2 batteries. J Power Sources 365:134–147. https://doi.org/10.1016/j.jpowsour.2017.08.081

    Article  CAS  Google Scholar 

  58. Sunka P, Babický V, Clupek M (2004) Localized damage of tissues induced by focused shock waves. IEEE Trans Plasma Sci 32:1609–1613. https://doi.org/10.1109/TPS.2004.830965

    Article  Google Scholar 

  59. Gassman PG, Macomber DW, Willging SM (1985) Isolation and characterization of reactive intermediates and active catalysts in homogeneous catalysis. J Am Chem Soc 107:2380–2388. https://doi.org/10.1021/ja00294a031

    Article  CAS  Google Scholar 

  60. Bazarjani MS, Hojamberdiev M, Morita K et al (2013) Visible light photocatalysis with c- WO3−x/WO3×H2O nanoheterostructures in situ formed in mesoporous polycarbosilane–siloxane polymer. J Am Chem Soc 135:4467–4475. https://doi.org/10.1021/ja3126678

    Article  CAS  Google Scholar 

  61. Colton RJ, Guzman AM, Rabalais JW (1978) Electrochromism in some thin-film transition-metal oxides characterized by x-ray electron spectroscopy. J Appl Phys 49:409–416. https://doi.org/10.1063/1.324349

    Article  CAS  Google Scholar 

  62. Sarma DD, Rao CNR (1980) XPES studies of oxides of second- and third-row transition metals including rare earths. J Electron SpectrosC Relat Phenom 20:25–45. https://doi.org/10.1016/0368-2048(80)85003-1

    Article  CAS  Google Scholar 

  63. Rahimnejad S, He JH, Pan F et al (2015) Enhancement of the photocatalytic efficiency of WO3 nanoparticles via hydrogen plasma treatment. Mater Res Express 1:045044. https://doi.org/10.1088/2053-1591/1/4/045044

    Article  CAS  Google Scholar 

  64. Rahimnejad S, He JH, Chen W et al (2014) Tuning the electronic and structural properties of WO3 nanocrystals by varying transition metal tungstate precursors. RSC Adv 4:62423–62429. https://doi.org/10.1039/C4RA10650D

    Article  CAS  Google Scholar 

  65. Li J, Liu Y, Zhu Z et al (2013) A full-sunlight-driven photocatalyst with super long-persistent energy storage ability. Sci Rep 3:2409. https://doi.org/10.1038/srep02409

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pang G, Chen S, Koltypin Y et al (2001) Controlling the particle size of calcined SnO2 nanocrystals. Nano Lett 1:723–726. https://doi.org/10.1021/nl0156181

    Article  CAS  Google Scholar 

  67. Abe R, Takami H, Murakami N, Ohtani B (2008) Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Chem Soc 130:7780–7781. https://doi.org/10.1021/ja800835q

    Article  CAS  PubMed  Google Scholar 

  68. Zhang J-G, Benson DK, Tracy CE et al (1997) Chromic mechanism in amorphous W03 films. J Electrochem Soc 144:2022–2026. https://doi.org/10.1149/1.1837737

    Article  CAS  Google Scholar 

  69. Siokou A, Leftheriotis G, Papaefthimiou S, Yianoulis P (2001) Effect of the tungsten and molybdenum oxidation states on the thermal coloration of amorphous WO3 and MoO3 films. Surf Sci 482–485:294–299. https://doi.org/10.1016/S0039-6028(01)00714-2

    Article  Google Scholar 

  70. González-Borrero PP, Sato F, Medina AN et al (2010) Optical band-gap determination of nanostructured WO3 film. Appl Phys Lett 96:061909. https://doi.org/10.1063/1.3313945

    Article  CAS  Google Scholar 

  71. Reddy KM, Manorama SV, Reddy AR (2003) Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78:239–245. https://doi.org/10.1016/S0254-0584(02)00343-7

    Article  Google Scholar 

  72. Zhang X, Zhang L, Xie T, Wang D (2009) Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J Phys Chem C 113:7371–7378. https://doi.org/10.1021/jp900812d

    Article  CAS  Google Scholar 

  73. Aslam I, Cao C, Tanveer M et al (2015) A facile one-step fabrication of novel WO3/Fe2(WO4)3·10.7H2O porous microplates with remarkable photocatalytic activities. CrystEngCommun 17:4809–4817. https://doi.org/10.1039/c5ce00712g

    Article  CAS  Google Scholar 

  74. Elbohy H, Reza KM, Abdulkarim S, Qiao Q (2018) Creation of oxygen vacancies to activate WO3 for higher efficiency dye-sensitized solar cells. Sustain Energy Fuels 2:403–412. https://doi.org/10.1039/c7se00483d

    Article  CAS  Google Scholar 

  75. Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200. https://doi.org/10.1021/ar9001069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Almquist CB, Biswas P (2002) Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J Catal 212:145–156. https://doi.org/10.1006/jcat.2002.3783

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors P. J. Boruah would like to thank DST, Govt. of India for support under the DST-INSPIRE scheme. The authors would like to thank Dr. Biswajit Choudhury and Dr. A. R. Pal for useful discussion and Trishamoni Kashyap for helping throughout the experiment. The authors also acknowledge the instrumentation facilities of IASST Guwahati, IIT Guwahati, NEHU Shillong and CSIR-NEIST Jorhat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bailung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boruah, P.J., Khanikar, R.R. & Bailung, H. Synthesis and Characterization of Oxygen Vacancy Induced Narrow Bandgap Tungsten Oxide (WO3−x) Nanoparticles by Plasma Discharge in Liquid and Its Photocatalytic Activity. Plasma Chem Plasma Process 40, 1019–1036 (2020). https://doi.org/10.1007/s11090-020-10073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10073-3

Keywords

Navigation