Skip to main content
Log in

Nonstoichiometric tungsten oxide: structure, synthesis, and applications

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Stoichiometric tungsten oxide (WO3) and tungsten bronzes have received much attention due to the energy-related functional performances. In addition, as a transition metal oxide, substoichiometric tungsten oxides have manifested their unique properties and exceptional potential to lots of applications; however, no other studies have concentrated on the oxygen-deficient tungsten oxides till now. Herein, this article presents the origin of structure and synthesis of W18O49 nanomaterials chiefly, and then the general introduction of different applications, including electrochemistry, photocatalysis, near-infrared shielding and phototherapy and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduce with permission [16]. Copyright 1982 Published by Elsevier Inc

Fig. 2

Reproduce with permission [44]. Copyright 2016 Tsinghua University Press and Springer-Verlag Berlin Heidelberg

Fig. 3

Reproduce with permission [72]. Copyright 2018 Elsevier B.V. All rights reserved

Fig. 4

Reproduce with permission [47]. Copyright 2013 American Chemical Society

Fig. 5

Reproduce with permission [81]. Copyright 2014 Elsevier Ltd. All rights reserved

Fig. 6

Reproduce with permission [88]. Copyright 2012, American Chemical Society

Similar content being viewed by others

References

  1. Z.F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J.J. Zou, Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27(36), 5309–5327 (2015)

    Article  CAS  Google Scholar 

  2. Y.M. Hunge, A.A. Yadav, B.M. Mohite, V.L. Mathe, C.H. Bhosale, Photoelectrocatalytic degradation of sugarcane factory wastewater using WO3/ZnO thin films. J. Mater. Sci.: Mater. Electron. 29(5), 3808–3816 (2017)

    Google Scholar 

  3. A. Ben Youssef, N. Barbana, M. Al-Addous, L. Bousselmi, Preparation and characterization of photocatalytic TiO2/WO3 films on functionalized stainless steel. J. Mater. Sci.: Mater. Electron. 29(23), 19909–19922 (2018)

    CAS  Google Scholar 

  4. Y.M. Hunge, A.A. Yadav, M.A. Mahadik, V.L. Mathe, C.H. Bhosale, A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue. J. Taiwan Inst. Chem. Eng. 85, 273–281 (2018)

    Article  CAS  Google Scholar 

  5. R. Chatten, A.V. Chadwick, A. Rougier, P.J.D. Lindan, The oxygen vacancy in crystal phases of WO3. J. Phys. Chem. B 109(8), 3146–3156 (2005)

    Article  CAS  Google Scholar 

  6. J.G. Zhang, D.K. Benson, C.E. Tracy, S.K. Deb, A.W. Czanderna, C. Bechinger, Chromic mechanism in amorphous WO3 films. J. Electrochem. Soc. 144, 2022–2025 (1997)

    Article  CAS  Google Scholar 

  7. Z. Zhou, B. Kong, C. Yu, X. Shi, M. Wang, W. Liu, Y. Sun, Y. Zhang, H. Yang, S. Yang, Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy. Sci. Rep. 4, 3653 (2014)

    Article  CAS  Google Scholar 

  8. Y. Zhou, S. Ko, C.W. Lee, S.G. Pyo, S.-K. Kim, S. Yoon, Enhanced charge storage by optimization of pore structure in nanocomposite between ordered mesoporous carbon and nanosized WO3-x. J. Power Sour. 244, 777–782 (2013)

    Article  CAS  Google Scholar 

  9. K. Manthiram, A.P. Alivisatos, Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 134(9), 3995–3998 (2012)

    Article  CAS  Google Scholar 

  10. S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26(25), 4260–4267 (2014)

    Article  CAS  Google Scholar 

  11. J. Qian, Z. Zhao, Z. Shen, G. Zhang, Z. Peng, X. Fu, Oxide vacancies enhanced visible active photocatalytic W19O55 NMRs via strong adsorption. RSC Adv. 6(10), 8061–8069 (2016)

    Article  CAS  Google Scholar 

  12. M. Remškar, J. Kovac, M. Viršek, M. Mrak, A. Jesih, A. Seabaugh, W5O14 nanowires. Adv. Func. Mater. 17(12), 1974–1978 (2007)

    Article  CAS  Google Scholar 

  13. Y. Lu, Y. Jiang, X. Gao, X. Wang, W. Chen, Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 136(33), 11687–11697 (2014)

    Article  CAS  Google Scholar 

  14. B.G. Hyde, A.N. Bagshaw, S. Andersson, M. O’Keeffe, Some defect structures in crystalline solids. Annu. Rev. Mater. Sci. 4(1), 43–92 (1974)

    Article  CAS  Google Scholar 

  15. J.G. Allpress, R.J.D. Tilley, M.J. Sienko, Examination of substoichiometric WO3−x crystals by electron microscopy. J. Solid State Chem. 3(3), 440–451 (1971)

    Article  CAS  Google Scholar 

  16. M. Lundberg, M. Sundberg, A. Magnéli, The “pentagonal column” as a building unit in crystal and defect structures of some groups of transition metal compounds. J. Solid State Chem. 44(1), 32–40 (1982)

    Article  CAS  Google Scholar 

  17. J.S. Anderson, R.J.D. Tilley, Crystallographic shear and non-stoicheiometry, in Surface and Defect Properties of Solids, ed. by M.W. Roberts, J.M. Thomas (The Chemical Society, London, 1974), pp. 1–56

    Google Scholar 

  18. A. Magnéli, Structures of the ReO3-type with recurrent dislocations of atoms: ‘homologous series’ of molybdenum and tungsten oxides. Acta Crystallogr. A 6(6), 495–500 (1953)

    Article  Google Scholar 

  19. H.A. Wriedt, The O-W (oxygen-tungsten) system. Bull. Alloy Phase Diagr. 10(4), 368–384 (1989)

    Article  CAS  Google Scholar 

  20. M. Sundberg, Structure and “oxidation behavior” of W24O70, a new member of the 103 CS series of tungsten oxides. J. Solid State Chem. 35(1), 120–127 (1980)

    Article  CAS  Google Scholar 

  21. S. Heo, J. Kim, G.K. Ong, D.J. Milliron, Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods. Nano Lett. 17(9), 5756–5761 (2017)

    Article  CAS  Google Scholar 

  22. A. Yella, M.N. Tahir, S. Meuer, R. Zentel, R. Berger, M. Panthöfer, W. Tremel, Synthesis, characterization, and hierarchical organization of tungsten oxide nanorods: spreading driven by Marangoni flow. J. Am. Chem. Soc. 131(48), 17566–17575 (2009)

    Article  CAS  Google Scholar 

  23. L. Wen, L. Chen, S. Zheng, J. Zeng, G. Duan, Y. Wang, G. Wang, Z. Chai, Z. Li, M. Gao, Ultrasmall biocompatible WO3−x nanodots for multi-modality imaging and combined therapy of cancers. Adv. Mater. 28(25), 5072–5079 (2016)

    Article  CAS  Google Scholar 

  24. K. Lee, W.S. Seo, J.T. Park, Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125(12), 3408–3409 (2003)

    Article  CAS  Google Scholar 

  25. D.C. Grauer, A.P. Alivisatos, Ligand dissociation mediated charge transfer observed at colloidal W18O49 nanoparticle interfaces. Langmuir 30(9), 2325–2328 (2014)

    Article  CAS  Google Scholar 

  26. B. Moshofsky, T. Mokari, Length and diameter control of ultrathin nanowires of substoichiometric tungsten oxide with insights into the growth mechanism. Chem. Mater. 25(8), 1384–1391 (2013)

    Article  CAS  Google Scholar 

  27. T. Paik, M. Cargnello, T.R. Gordon, S. Zhang, H. Yun, J.D. Lee, H.Y. Woo, S.J. Oh, C.R. Kagan, P. Fornasiero, C.B. Murray, Photocatalytic hydrogen evolution from substoichiometric colloidal WO3–x nanowires. ACS Energy Lett. 3(8), 1904–1910 (2018)

    Article  CAS  Google Scholar 

  28. G. Li, G. Wu, C. Guo, B. Wang, Fabrication of one-dimensional W18O49 nanomaterial for the near infrared shielding. Mater. Lett. 169, 227–230 (2016)

    Article  CAS  Google Scholar 

  29. S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 11(10), 2884–2892 (2018)

    Article  CAS  Google Scholar 

  30. S. Zhang, S. Cao, T. Zhang, Q. Yao, A. Fisher, J.Y. Lee, Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance. Mater. Horiz. 5(2), 291–297 (2018)

    Article  CAS  Google Scholar 

  31. S. Ge, K.W. Wong, S.K. Tam, C.H. Mak, K.M. Ng, Facile synthesis of WO3−x nanorods with controlled dimensions and tunable near-infrared absorption. J. Nanopart. Res. (2018). https://doi.org/10.1007/s11051-018-4384-2

    Article  Google Scholar 

  32. Z. Xi, A. Mendoza-Garcia, H. Zhu, M. Chi, D. Su, D.P. Erdosy, J. Li, S. Sun, NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction. Green Energy Environ. 2(2), 119–123 (2017)

    Article  Google Scholar 

  33. S.B. Rawal, S. Bera, W.I. Lee, Visible-light photocatalytic properties of W18O49/TiO2 and WO3/TiO2 heterocomposites. Catal. Lett. 142(12), 1482–1488 (2012)

    Article  CAS  Google Scholar 

  34. Z. Lou, Q. Gu, L. Xu, Y. Liao, C. Xue, Surfactant-free synthesis of plasmonic tungsten oxide nanowires with visible-light-enhanced hydrogen generation from ammonia borane. Chem. Asian J. 10(6), 1291–1294 (2015)

    Article  CAS  Google Scholar 

  35. K. Li, Y. Shao, S. Liu, Q. Zhang, H. Wang, Y. Li, R.B. Kaner, Aluminum-ion-intercalation supercapacitors with ultrahigh areal capacitance and highly enhanced cycling stability: power supply for flexible electrochromic devices. Small (2017). https://doi.org/10.1002/smll.201700380

    Article  Google Scholar 

  36. Y. Deng, L. Tang, C. Feng, G. Zeng, Z. Chen, J. Wang, H. Feng, B. Peng, Y. Liu, Y. Zhou, Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light. Appl. Catal. B 235, 225–237 (2018)

    Article  CAS  Google Scholar 

  37. H.G. Choi, Y.H. Jung, D.K. Kim, Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J. Am. Ceram. Soc. 88(6), 1684–1686 (2005)

    Article  CAS  Google Scholar 

  38. C. Guo, S. Yin, Q. Dong, T. Sato, The near infrared absorption properties of W18O49. RSC Adv. 2(12), 5041–5043 (2012)

    Article  CAS  Google Scholar 

  39. J. Jung, D.H. Kim, W18O49 nanowires assembled on carbon felt for application to supercapacitors. Appl. Surf. Sci. 433, 750–755 (2018)

    Article  CAS  Google Scholar 

  40. Z.-F. Huang, J.-J. Zou, L. Pan, S. Wang, X. Zhang, L. Wang, Synergetic promotion on photoactivity and stability of W18O49/TiO2 hybrid. Appl. Catal. B Environ. 147, 167–174 (2014)

    Article  CAS  Google Scholar 

  41. Y. Liu, X. Xu, Y. Chen, Z. Zhang, Y. Gao, K. Liu, L. Gong, B. Dong, Switchable optical nonlinear properties of W18O49 nanowires by Ag nanoparticles supported. Sci. China Phys. Mech. Astron. 60(11), 116831 (2017)

    Article  CAS  Google Scholar 

  42. Y. Tian, S. Cong, W. Su, H. Chen, Q. Li, F. Geng, Z. Zhao, Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett. 14(4), 2150–2156 (2014)

    Article  CAS  Google Scholar 

  43. X. Huang, Z. Zhang, H. Li, H. Wang, T. Ma, In-situ growth of nanowire WO2.72 on carbon cloth as a binder-free electrode for flexible asymmetric supercapacitors with high performance. J. Energy Chem. 29, 58–64 (2019)

    Article  Google Scholar 

  44. S. Park, H.-W. Shim, C.W. Lee, H.J. Song, J.-C. Kim, D.-W. Kim, High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes. Nano Res. 9(3), 633–643 (2016)

    Article  CAS  Google Scholar 

  45. Z.-F. Huang, J. Song, L. Pan, F. Lv, Q. Wang, J.-J. Zou, X. Zhang, L. Wang, Mesoporous W18O49 hollow spheres as highly active photocatalysts. Chem. Commun. 50(75), 10959–10962 (2014)

    Article  CAS  Google Scholar 

  46. G. Xi, S. Ouyang, P. Li, J. Ye, Q. Ma, N. Su, H. Bai, C. Wang, Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem. 51(10), 2395–2399 (2012)

    Article  CAS  Google Scholar 

  47. B.J. Liu, J. Zheng, J.L. Wang, J. Xu, H.H. Li, S.H. Yu, Ultrathin W18O49 nanowire assemblies for electrochromic devices. Nano Lett. 13(8), 3589–3593 (2013)

    Article  CAS  Google Scholar 

  48. J. Qiu, Q. Xiao, X. Zheng, L. Zhang, H. Xing, D. Ni, Y. Liu, S. Zhang, Q. Ren, Y. Hua, K. Zhao, W. Bu, Single W18O49 nanowires: a multifunctional nanoplatform for computed tomography imaging and photothermal/photodynamic/radiation synergistic cancer therapy. Nano Res. 8(11), 3580–3590 (2015)

    Article  CAS  Google Scholar 

  49. P. Kalluru, R. Vankayala, C.-S. Chiang, K.C. Hwang, Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W18O49 nanowires. Angew. Chem. 52(47), 12332–12336 (2013)

    Article  CAS  Google Scholar 

  50. Z. Chen, Q. Wang, H. Wang, L. Zhang, G. Song, L. Song, J. Hu, H. Wang, J. Liu, M. Zhu, D. Zhao, Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater. 25(14), 2095–2100 (2013)

    Article  CAS  Google Scholar 

  51. B. Li, Y. Zhang, R. Zou, Q. Wang, B. Zhang, L. An, F. Yin, Y. Hua, J. Hu, Self-assembled WO3−x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser. Dalton Trans. 43(16), 6244–6250 (2014)

    Article  CAS  Google Scholar 

  52. C.-H. Lu, M.-H. Hon, C.-Y. Kuan, I.-C. Leu, A complementary electrochromic device based on W18O49 nanowire arrays and Prussian blue thin films. RSC Adv. 6(3), 1913–1918 (2016)

    Article  CAS  Google Scholar 

  53. Y. Xiong, Z. Zhu, T. Guo, H. Li, Q. Xue, Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application. J. Hazard. Mater. 353, 290–299 (2018)

    Article  CAS  Google Scholar 

  54. H. Zhou, Y. Shi, L. Wang, H. Zhang, C. Zhao, A. Hagfeldt, T. Ma, Notable catalytic activity of oxygen-vacancy-rich WO2.72 nanorod bundles as counter electrodes for dye-sensitized solar cells. Chem. Commun. 49(69), 7626–7628 (2013)

    Article  CAS  Google Scholar 

  55. K. Deng, Z. Hou, X. Deng, P. Yang, C. Li, J. Lin, Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure. Adv. Func. Mater. 25(47), 7280–7290 (2015)

    Article  CAS  Google Scholar 

  56. D. Liu, G. Li, C. Zhao, X. Wang, M. Sun, X. Sun, M. Yan, C. Guo, WO3 − x for rapid adsorption and full-spectrum-responsive photocatalytic activities. J. Mater. Sci.: Mater. Electron. 29(17), 15029–15033 (2018)

    CAS  Google Scholar 

  57. Z.-F. Huang, J. Song, L. Pan, X. Jia, Z. Li, J.-J. Zou, X. Zhang, L. Wang, W18O49 nanowire alignments with a BiOCl shell as an efficient photocatalyst. Nanoscale 6(15), 8865–8872 (2014)

    Article  CAS  Google Scholar 

  58. Y.M. Zhao, Y.Q. Zhu, Room temperature ammonia sensing properties of W18O49 nanowires. Sens. Actuators B: Chem. 137(1), 27–31 (2009)

    Article  CAS  Google Scholar 

  59. T. Kunyapat, F. Xu, N. Neate, N. Wang, A. Sanctis, S. Russo, S. Zhang, Y. Xia, Y. Zhu, Ce-Doped bundled ultrafine diameter tungsten oxide nanowires with enhanced electrochromic performance. Nanoscale 10(10), 4718–4726 (2018)

    Article  CAS  Google Scholar 

  60. W. Cheng, Y. Ju, P. Payamyar, D. Primc, J. Rao, C. Willa, D. Koziej, M. Niederberger, Large-area alignment of tungsten oxide nanowires over flat and patterned substrates for room-temperature gas sensing. Angew. Chem. 54(1), 340–344 (2015)

    Article  CAS  Google Scholar 

  61. X.W. Lou, H.C. Zeng, An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution. Inorg. Chem. 42, 6169–6171 (2003)

    Article  CAS  Google Scholar 

  62. H. Chen, W. Cai, X. Gao, J. Luo, X. Su, PABA-assisted hydrothermal fabrication of W18O49 nanowire networks and its transition to WO3 for photocatalytic degradation of methylene blue. Adv. Powder Technol. 29(5), 1272–1279 (2018)

    Article  CAS  Google Scholar 

  63. G. Li, S. Zhang, C. Guo, S. Liu, Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide. Nanoscale 8(18), 9861–9868 (2016)

    Article  CAS  Google Scholar 

  64. J. Thangala, S. Vaddiraju, R. Bogale, R. Thurman, T. Powers, B. Deb, M.K. Sunkara, Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires. Small 3(5), 890–896 (2007)

    Article  CAS  Google Scholar 

  65. X. Zhang, L. Gong, K. Liu, Y. Cao, X. Xiao, W. Sun, X. Hu, Y. Gao, J. Chen, J. Zhou, Z.L. Wang, Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode. Adv. Mater. 22(46), 5292–5296 (2010)

    Article  CAS  Google Scholar 

  66. J. Zhou, Y. Ding, S.Z. Deng, L. Gong, N.S. Xu, Z.L. Wang, Three-dimensional tungsten oxide nanowire networks. Adv. Mater. 17(17), 2107 (2005)

    Article  CAS  Google Scholar 

  67. Y. Li, Y. Bando, D. Golberg, Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 15, 1294–1296 (2003)

    Article  CAS  Google Scholar 

  68. Y.Q. Zhu, W.B. Hu, W.K. Hsu, M. Terrones, N. Grobert, J.P. Hare, H.W. Kroto, D.R.M. Walton, H. Terrones, Tungsten oxide tree-like structures. Chem. Phys. Lett. 309(5–6), 327–334 (1999)

    Article  CAS  Google Scholar 

  69. K. Hong, M. Xie, H. Wu, Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature. Nanotechnology 17(19), 4830–4833 (2006)

    Article  CAS  Google Scholar 

  70. W.B. Hu, Y.Q. Zhu, W.K. Hsu, B.H. Chang, M. Terrones, N. Grobert, H. Terrones, J.P. Hare, H.W. Kroto, D.R.M. Walton, Generation of hollow crystalline tungsten oxide fibres. Appl. Phys. A 70(2), 231–233 (2000)

    Article  CAS  Google Scholar 

  71. C. Guo, S. Yin, Y. Huang, Q. Dong, T. Sato, Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties. Langmuir 27(19), 12172–12178 (2011)

    Article  CAS  Google Scholar 

  72. J. Zhang, H. Zhang, L.Y. Liu, F. Li, S. Wang, W18O49 nanorods: controlled preparation, structural refinement, and electric conductivity. Chem. Phys. Lett. 706, 243–246 (2018)

    Article  CAS  Google Scholar 

  73. C.G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995)

    Google Scholar 

  74. J. Xie, B. Song, G. Zhao, G. Han, Citric acid induced W18O49 electrochromic films with enhanced optical modulation. Appl. Phys. Lett. 112(23), 231902 (2018)

    Article  CAS  Google Scholar 

  75. A.L.-S. Eh, A.W.M. Tan, X. Cheng, S. Magdassi, P.S. Lee, Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects. Energy Technol. 6(1), 33–45 (2018)

    Article  Google Scholar 

  76. K.R. Li, Q.H. Zhang, H.Z. Wang, Y.G. Li, Lightweight, highly bendable and foldable electrochromic films based on all-solution-processed bilayer nanowire networks. J. Mater. Chem. C 4(24), 5849–5857 (2016)

    Article  CAS  Google Scholar 

  77. S. Yoon, E. Kang, J.K. Kim, C.W. Lee, J. Lee, Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chem. Commun. 47(3), 1021–1023 (2011)

    Article  CAS  Google Scholar 

  78. D. Wang, J. Li, X. Cao, G. Pang, S. Feng, Hexagonal mesocrystals formed by ultra-thin tungsten oxide nanowires and their electrochemical behaviour. Chem. Commun. (Camb.) 46(41), 7718–7720 (2010)

    Article  CAS  Google Scholar 

  79. K. Li, Y. Shao, H. Yan, Z. Lu, K.J. Griffith, J. Yan, G. Wang, H. Fan, J. Lu, W. Huang, B. Bao, X. Liu, C. Hou, Q. Zhang, Y. Li, J. Yu, H. Wang, Lattice-contraction triggered synchronous electrochromic actuator. Nat. Commun. 9(1), 4798 (2018)

    Article  CAS  Google Scholar 

  80. H. Kim, K. Senthil, K. Yong, Photoelectrochemical and photocatalytic properties of tungsten oxide nanorods grown by thermal evaporation. Mater. Chem. Phys. 120(2), 452–455 (2010)

    Article  CAS  Google Scholar 

  81. X. Li, S. Yang, J. Sun, P. He, X. Xu, G. Ding, Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis. Carbon 78, 38–48 (2014)

    Article  CAS  Google Scholar 

  82. N. Barbana, A. Ben Youssef, H. Dhiflaoui, L. Bousselmi, Preparation and characterization of photocatalytic TiO2 films on functionalized stainless steel. J. Mater. Sci. 53(5), 3341–3363 (2017)

    Article  CAS  Google Scholar 

  83. S.B. Rawal, S. Bera, D. Lee, D.-J. Jang, W.I. Lee, Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency. Catal. Sci. Technol. 3(7), 1822–1830 (2013)

    Article  CAS  Google Scholar 

  84. W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, G. Zheng, WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano 8(11), 11770–11777 (2014)

    Article  CAS  Google Scholar 

  85. J. Yan, T. Wang, G. Wu, W. Dai, N. Guan, L. Li, J. Gong, Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 27(9), 1580–1586 (2015)

    Article  CAS  Google Scholar 

  86. G. Xi, J. Ye, Q. Ma, N. Su, H. Bai, C. Wang, In situ growth of metal particles on 3D urchin-like WO3 nanostructures. J. Am. Chem. Soc. 134(15), 6508–6511 (2012)

    Article  CAS  Google Scholar 

  87. Z. Zhang, J. Huang, Y. Fang, M. Zhang, K. Liu, B. Dong, A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv. Mater. (2017). https://doi.org/10.1002/adma.201606688

    Article  Google Scholar 

  88. C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, T. Sato, Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorg. Chem. 51(8), 4763–4771 (2012)

    Article  CAS  Google Scholar 

  89. S. Zonghai, H. Dehong, Z. Mingbin, Z. Pengfei, L. Huilong, G. Duyang, G. Ping, G. Guanhui, Z. Pengfei, M. Yifan, Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano 8(12), 12310–12322 (2014)

    Article  CAS  Google Scholar 

  90. S. Vallejos, P. Umek, T. Stoycheva, F. Annanouch, E. Llobet, X. Correig, P. De Marco, C. Bittencourt, C. Blackman, Single-step deposition of Au- and Pt-nanoparticle-functionalized tungsten oxide nanoneedles synthesized via aerosol-assisted CVD, and used for fabrication of selective gas microsensor arrays. Adv. Func. Mater. 23(10), 1313–1322 (2013)

    Article  CAS  Google Scholar 

  91. M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, P. Chindaudom, Ultrasensitive hydrogen sensor based on pt-decorated WO3 nanorods prepared by glancing-angle DC magnetron sputtering. ACS Appl. Mater. Interfaces. 6(24), 22051–22060 (2014)

    Article  CAS  Google Scholar 

  92. Y.S. Kim, S.-C. Ha, K. Kim, H. Yang, S.-Y. Choi, Y.T. Kim, J.T. Park, C.H. Lee, J. Choi, J. Paek, K. Lee, Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl. Phys. Lett. 86(21), 213105 (2005)

    Article  CAS  Google Scholar 

  93. Y. Qin, M. Hu, J. Zhang, Microstructure characterization and NO2-sensing properties of tungsten oxide nanostructures. Sens. Actuators B: Chem. 150(1), 339–345 (2010)

    Article  CAS  Google Scholar 

  94. S. Sun, X. Chang, L. Dong, Y. Zhang, Z. Li, Y. Qiu, W18O49 nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst. J. Solid State Chem. 184(8), 2190–2195 (2011)

    Article  CAS  Google Scholar 

  95. L.F. Zhu, J.C. She, J.Y. Luo, S.Z. Deng, J. Chen, X.W. Ji, N.S. Xu, Self-heated hydrogen gas sensors based on Pt-coated W18O49 nanowire networks with high sensitivity, good selectivity and low power consumption. Sens. Actuators B: Chem. 153(2), 354–360 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Scientific and Technological Development Project of the Beijing Education Committee (No. KZ201710005009) and Key Laboratory of Advanced Functional Materials, Education Ministry of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, H., Liu, J. et al. Nonstoichiometric tungsten oxide: structure, synthesis, and applications. J Mater Sci: Mater Electron 31, 861–873 (2020). https://doi.org/10.1007/s10854-019-02596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02596-z

Navigation