Skip to main content

Advertisement

Log in

The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Nearly 20 years ago, the concept of targeting the proteasome for cancer therapy began gaining momentum. This concept was driven by increased understanding of the biology/structure and function of the 26S proteasome, insight into the role of the proteasome in transformed cells, and the synthesis of pharmacological inhibitors with clinically favorable features. Subsequent in vitro, in vivo, and clinical testing culminated in the FDA approval of three proteasome inhibitors—bortezomib, carfilzomib, and ixazomib—for specific hematological malignancies. However, despite in vitro and in vivo studies pointing towards efficacy in solid tumors, clinical responses broadly have been evasive. For brain tumors, a malignancy in dire need of new approaches both in adult and pediatric patients, this has also been the case. Elucidation of proteasome-dependent processes in specific types of brain tumors, the evolution of newer proteasome targeting strategies, and the use of proteasome inhibitors in combination strategies will clarify how these agents can be leveraged more effectively to treat central nervous system malignancies. Since brain tumors represent a heterogeneous subset of solid tumors, and in particular, pediatric brain tumors possess distinct biology from adult brain tumors, tailoring of proteasome inhibitor-based strategies to specific subtypes of these tumors will be critical for advancing care for affected patients, and will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Howlander N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2014) (eds). in National Cancer Institute, Bethesda, MD.

  2. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    Article  CAS  PubMed  Google Scholar 

  3. Hochstrasser, M. (2009). Origin and function of ubiquitin-like proteins. Nature, 458, 422–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hough, R., Pratt, G., & Rechsteiner, M. (1987). Purification of two high molecular weight proteases from rabbit reticulocyte lysate. The Journal of Biological Chemistry, 262, 8303–8313.

    CAS  PubMed  Google Scholar 

  5. Waxman, L., Fagan, J. M., Tanaka, K., & Goldberg, A. L. (1985). A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells. Evidence for a protease which requires ATP hydrolysis but not ubiquitin. The Journal of Biological Chemistry, 260, 11994–12000.

    CAS  PubMed  Google Scholar 

  6. Driscoll, J., & Goldberg, A. L. (1990). The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. The Journal of Biological Chemistry, 265, 4789–4792.

    CAS  PubMed  Google Scholar 

  7. Ciechanover, A., Heller, H., Katz-Etzion, R., & Hershko, A. (1981). Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proceedings of the National Academy of Sciences of the United States of America, 78, 761–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pickart, C. M., & Rose, I. A. (1985). Functional heterogeneity of ubiquitin carrier proteins. The Journal of Biological Chemistry, 260, 1573–1581.

    CAS  PubMed  Google Scholar 

  9. Hershko, A., Heller, H., Elias, S., & Ciechanover, A. (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. The Journal of Biological Chemistry, 258, 8206–8214.

    CAS  PubMed  Google Scholar 

  10. van Nocker, S., & Vierstra, R. D. (1993). Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. The Journal of Biological Chemistry, 268, 24766–24773.

    PubMed  Google Scholar 

  11. Ye, Y., & Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nature Reviews. Molecular Cell Biology, 10, 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eytan, E., Ganoth, D., Armon, T., & Hershko, A. (1989). ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proceedings of the National Academy of Sciences of the United States of America, 86, 7751–7755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Glickman, M. H., & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews, 82, 373–428.

    Article  CAS  PubMed  Google Scholar 

  14. Glickman, M. H., et al. (1998). A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell, 94, 615–623.

    Article  CAS  PubMed  Google Scholar 

  15. Groll, M., et al. (1999). The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proceedings of the National Academy of Sciences of the United States of America, 96, 10976–10983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orlowski, M., & Wilk, S. (2000). Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Archives of Biochemistry and Biophysics, 383, 1–16.

    Article  CAS  PubMed  Google Scholar 

  17. Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8, 739–758.

    Article  CAS  Google Scholar 

  18. Rechsteiner, M., Realini, C., & Ustrell, V. (2000). The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochemical Journal, 345(Pt 1), 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whitby, F. G., et al. (2000). Structural basis for the activation of 20S proteasomes by 11S regulators. Nature-London, 408, 115–120.

    Article  CAS  PubMed  Google Scholar 

  20. Rechsteiner, M., & Hill, C. P. (2005). Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends in Cell Biology, 15, 27–33.

    Article  CAS  PubMed  Google Scholar 

  21. Noda, C., Tanahashi, N., Shimbara, N., Hendil, K. B., & Tanaka, K. (2000). Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochemical and Biophysical Research Communications, 277, 348–354.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, X., Barton, L. F., Chi, A., Clurman, B. E., & Roberts, J. M. (2007). Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Molecular Cell, 26, 843–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Groettrup, M., et al. (1995). The interferon-gamma-inducible 11 S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20 S proteasome in vitro. The Journal of Biological Chemistry, 270, 23808–23815.

    Article  CAS  PubMed  Google Scholar 

  24. Cascio, P., Hilton, C., Kisselev, A. F., Rock, K. L., & Goldberg, A. L. (2001). 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. The EMBO Journal, 20, 2357–2366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Toes, R., et al. (2001). Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. The Journal of Experimental Medicine, 194, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Piccinini, M., et al. (2005). Characterization of the 20S proteasome in human glioblastomas. Anticancer Research, 25, 3203–3210.

    CAS  PubMed  Google Scholar 

  27. Swartling, F. J. (2012). Myc proteins in brain tumor development and maintenance. Upsala Journal of Medical Sciences, 117, 122–131.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bondy, M. L., et al. (2008). Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer, 113, 1953–1968.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sturm, D., et al. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22, 425–437.

    Article  CAS  PubMed  Google Scholar 

  30. Sturm, D., et al. (2014). Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nature Reviews. Cancer, 14, 92–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Korshunov, A., et al. (2015). Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 129, 669–678.

    Article  CAS  PubMed  Google Scholar 

  32. Liang, M. L., et al. (2008). Tyrosine kinase expression in pediatric high grade astrocytoma. Journal of Neuro-Oncology, 87, 247–253.

    Article  PubMed  Google Scholar 

  33. Puputti, M., et al. (2006). Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Molecular Cancer Research, 4, 927–934.

    Article  CAS  PubMed  Google Scholar 

  34. Peschard, P., & Park, M. (2003). Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell, 3, 519–523.

    Article  CAS  PubMed  Google Scholar 

  35. Kuchay, S., et al. (2013). FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nature Cell Biology, 15, 472–480.

    Article  CAS  PubMed  Google Scholar 

  36. Mao, J. H., et al. (2008). FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science, 321, 1499–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes & Development, 22, 1276–1312.

    Article  CAS  Google Scholar 

  38. Assanah, M. C., et al. (2009). PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia, 57, 1835–1847.

    Article  CAS  PubMed  Google Scholar 

  39. Clarke, I. D., & Dirks, P. B. (2003). A human brain tumor-derived PDGFR-alpha deletion mutant is transforming. Oncogene, 22, 722–733.

    Article  CAS  PubMed  Google Scholar 

  40. Paugh, B. S., et al. (2010). Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. Journal of Clinical Oncology, 28, 3061–3068.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dai, C., et al. (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes & Development, 15, 1913–1925.

    Article  CAS  Google Scholar 

  42. Maxwell, M., et al. (1990). Coexpression of platelet-derived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance. The Journal of Clinical Investigation, 86, 131–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. N. Cancer Genome Atlas Research. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068.

    Article  CAS  Google Scholar 

  44. Thorarinsdottir, H. K., et al. (2008). Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clinical Cancer Research, 14, 3386–3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shamah, S. M., Stiles, C. D., & Guha, A. (1993). Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Molecular and Cellular Biology, 13, 7203–7212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohgaki, H., & Kleihues, P. (2007). Genetic pathways to primary and secondary glioblastoma. The American Journal of Pathology, 170, 1445–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bredel, M., Pollack, I. F., Hamilton, R. L., & James, C. D. (1999). Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clinical Cancer Research, 5, 1786–1792.

    CAS  PubMed  Google Scholar 

  48. Frederick, L., Wang, X. Y., Eley, G., & James, C. D. (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Research, 60, 1383–1387.

    CAS  PubMed  Google Scholar 

  49. MacDonald, T. J., Aguilera, D., & Kramm, C. M. (2011). Treatment of high-grade glioma in children and adolescents. Neuro-Oncology, 13, 1049–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hartman, Z., Zhao, H., & Agazie, Y. M. (2013). HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in a manner that overcomes regulatory mechanisms and promotes proliferative and transformation signaling. Oncogene, 32, 4169–4180.

    Article  CAS  PubMed  Google Scholar 

  51. Koochekpour, S., et al. (1997). Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Research, 57, 5391–5398.

    CAS  PubMed  Google Scholar 

  52. Mosesson, Y., et al. (2003). Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. The Journal of Biological Chemistry, 278, 21323–21326.

    Article  CAS  PubMed  Google Scholar 

  53. Marmor, M. D., & Yarden, Y. (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene, 23, 2057–2070.

    Article  CAS  PubMed  Google Scholar 

  54. Yuan, T. L., & Cantley, L. C. (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene, 27, 5497–5510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zoncu, R., Efeyan, A., & Sabatini, D. M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews. Molecular Cell Biology, 12, 21–35.

    Article  CAS  PubMed  Google Scholar 

  56. Fang, D., & Liu, Y. C. (2001). Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nature Immunology, 2, 870–875.

    Article  CAS  PubMed  Google Scholar 

  57. Fan, Q. W., & Weiss, W. A. (2012). Inhibition of PI3K-Akt-mTOR signaling in glioblastoma by mTORC1/2 inhibitors. Methods in Molecular Biology, 821, 349–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao, Y., & Sun, Y. (2012). Targeting the mTOR-DEPTOR pathway by CRL E3 ubiquitin ligases: therapeutic application. Neoplasia, 14, 360–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Olovnikov, I. A., Kravchenko, J. E., & Chumakov, P. M. (2009). Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Seminars in Cancer Biology, 19, 32–41.

    Article  CAS  PubMed  Google Scholar 

  60. Haupt, Y., Maya, R., Kazaz, A., & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387, 296–299.

    Article  CAS  PubMed  Google Scholar 

  61. Momand, J., Zambetti, G. P., Olson, D. C., George, D., & Levine, A. J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69, 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  62. Kruse, J. P., & Gu, W. (2009). Modes of p53 regulation. Cell, 137, 609–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, X., & Jiang, X. (2012). Mdm2 and MdmX partner to regulate p53. FEBS Letters, 586, 1390–1396.

    Article  CAS  PubMed  Google Scholar 

  64. Love, I. M., & Grossman, S. R. (2012). It takes 15 to tango: making sense of the many ubiquitin ligases of p53. Genes & Cancer, 3, 249–263.

    Article  CAS  Google Scholar 

  65. Pomeroy, S. L. (1994). The p53 tumor suppressor gene and pediatric brain tumors. Current Opinion in Pediatrics, 6, 632–635.

    Article  CAS  PubMed  Google Scholar 

  66. Zhukova, N., et al. (2013). Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. Journal of Clinical Oncology, 31, 2927–2935.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pollack, I. F., et al. (1997). The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Research, 57, 304–309.

    CAS  PubMed  Google Scholar 

  68. Kunkele, A., et al. (2012). Pharmacological activation of the p53 pathway by nutlin-3 exerts anti-tumoral effects in medulloblastomas. Neuro-Oncology, 14, 859–869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Knoepfler, P. S., Cheng, P. F., & Eisenman, R. N. (2002). N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes & Development, 16, 2699–2712.

    Article  CAS  Google Scholar 

  70. Korshunov, A., et al. (2012). Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathologica, 123, 515–527.

    Article  CAS  PubMed  Google Scholar 

  71. Bjerke, L., et al. (2013). Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discovery, 3, 512–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kawauchi, D., et al. (2012). A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell, 21, 168–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pei, Y., et al. (2012). An animal model of MYC-driven medulloblastoma. Cancer Cell, 21, 155–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Choi, S. H., Wright, J. B., Gerber, S. A., & Cole, M. D. (2010). Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes & Development, 24, 1236–1241.

    Article  CAS  Google Scholar 

  75. Popov, N., Schulein, C., Jaenicke, L. A., & Eilers, M. (2010). Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nature Cell Biology, 12, 973–981.

    Article  CAS  PubMed  Google Scholar 

  76. von der Lehr, N., et al. (2003). The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Molecular Cell, 11, 1189–1200.

    Article  PubMed  Google Scholar 

  77. Adhikary, S., et al. (2005). The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell, 123, 409–421.

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, X., et al. (2008). The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature Cell Biology, 10, 643–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Penas, C., Ramachandran, V., & Ayad, N. G. (2011). The APC/C ubiquitin ligase: from cell biology to tumorigenesis. Frontiers in Oncology, 1, 60.

    PubMed  Google Scholar 

  80. Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J., & Jackson, P. K. (2002). E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nature Cell Biology, 4, 358–366.

    Article  CAS  PubMed  Google Scholar 

  81. Lehman, N. L., Verschuren, E. W., Hsu, J. Y., Cherry, A. M., & Jackson, P. K. (2006). Overexpression of the anaphase promoting complex/cyclosome inhibitor Emi1 leads to tetraploidy and genomic instability of p53-deficient cells. Cell Cycle, 5, 1569–1573.

    Article  CAS  PubMed  Google Scholar 

  82. Margottin-Goguet, F., et al. (2003). Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Developmental Cell, 4, 813–826.

    Article  CAS  PubMed  Google Scholar 

  83. Guardavaccaro, D., et al. (2003). Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Developmental Cell, 4, 799–812.

    Article  CAS  PubMed  Google Scholar 

  84. Carrano, A. C., Eytan, E., Hershko, A., & Pagano, M. (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biology, 1, 193–199.

    Article  CAS  PubMed  Google Scholar 

  85. Marti, A., Wirbelauer, C., Scheffner, M., & Krek, W. (1999). Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biology, 1, 14–19.

    Article  CAS  PubMed  Google Scholar 

  86. Peart, M. J., et al. (2010). APC/C(Cdc20) targets E2F1 for degradation in prometaphase. Cell Cycle, 9, 3956–3964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Visintin, R., Prinz, S., & Amon, A. (1997). CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science, 278, 460–463.

    Article  CAS  PubMed  Google Scholar 

  88. Puram, S. V., & Bonni, A. (2011). Novel functions for the anaphase-promoting complex in neurobiology. Seminars in Cell & Developmental Biology, 22, 586–594.

    Article  CAS  Google Scholar 

  89. Lasorella, A., et al. (2006). Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature, 442, 471–474.

    Article  CAS  PubMed  Google Scholar 

  90. Vlachostergios, P. J., Voutsadakis, I. A., & Papandreou, C. N. (2012). The ubiquitin-proteasome system in glioma cell cycle control. Cell Div, 7, 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schiffer, D., Cavalla, P., Fiano, V., Ghimenti, C., & Piva, R. (2002). Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neuroscience Letters, 328, 125–128.

    Article  CAS  PubMed  Google Scholar 

  92. Veeriah, S., et al. (2010). Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genetics, 42, 77–82.

    Article  CAS  PubMed  Google Scholar 

  93. Ben-Neriah, Y., & Karin, M. (2011). Inflammation meets cancer, with NF-kappaB as the matchmaker. Nature Immunology, 12, 715–723.

    Article  CAS  PubMed  Google Scholar 

  94. Gilmore, T. D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 25, 6680–6684.

    Article  CAS  PubMed  Google Scholar 

  95. Harhaj, E. W., & Dixit, V. M. (2011). Deubiquitinases in the regulation of NF-kappaB signaling. Cell Research, 21, 22–39.

    Article  CAS  PubMed  Google Scholar 

  96. Arabi, A., et al. (2012). Proteomic screen reveals Fbw7 as a modulator of the NF-kappaB pathway. Nature Communications, 3, 976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Busino, L., et al. (2012). Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nature Cell Biology, 14, 375–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fukushima, H., et al. (2012). SCF(Fbw7) modulates the NFkB signaling pathway by targeting NFkB2 for ubiquitination and destruction. Cell Reports, 1, 434–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bredel, M., et al. (2011). NFKBIA deletion in glioblastomas. The New England Journal of Medicine, 364, 627–637.

    Article  CAS  PubMed  Google Scholar 

  100. Wang, H., et al. (2004). Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Laboratory Investigation, 84, 941–951.

    Article  CAS  PubMed  Google Scholar 

  101. Hussain, S. F., et al. (2006). The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-Oncology, 8, 261–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dhall, G. (2009). Medulloblastoma. Journal of Child Neurology, 24, 1418–1430.

    Article  PubMed  Google Scholar 

  103. Kool, M., et al. (2012). Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 123, 473–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. DeSouza, R. M., Jones, B. R., Lowis, S. P., & Kurian, K. M. (2014). Pediatric medulloblastoma - update on molecular classification driving targeted therapies. Frontiers in Oncology, 4, 176.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schuller, U., et al. (2008). Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell, 14, 123–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gibson, P., et al. (2010). Subtypes of medulloblastoma have distinct developmental origins. Nature, 468, 1095–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kool, M., et al. (2014). Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell, 25, 393–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yauch, R. L., et al. (2009). Smoothened mutation confers resistance to a hedgehog pathway inhibitor in medulloblastoma. Science, 326, 572–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zurawel, R. H., Chiappa, S. A., Allen, C., & Raffel, C. (1998). Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Research, 58, 896–899.

    CAS  PubMed  Google Scholar 

  110. Huang, H., et al. (2000). APC mutations in sporadic medulloblastomas. The American Journal of Pathology, 156, 433–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rausch, T., et al. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148, 59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lehman, N. L. (2009). The ubiquitin proteasome system in neuropathology. Acta Neuropathologica, 118, 329–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vriend, J., Ghavami, S., & Marzban, H. (2015). The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Molecular Brain, 8, 64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Alvarez-Rodriguez, R., Barzi, M., Berenguer, J., & Pons, S. (2007). Bone morphogenetic protein 2 opposes Shh-mediated proliferation in cerebellar granule cells through a TIEG-1-based regulation of Nmyc. The Journal of Biological Chemistry, 282, 37170–37180.

    Article  CAS  PubMed  Google Scholar 

  115. Nelson, W. J., & Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 303, 1483–1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wodarz, A., & Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology, 14, 59–88.

    Article  CAS  PubMed  Google Scholar 

  117. Mikesch, J. H., Steffen, B., Berdel, W. E., Serve, H., & Muller-Tidow, C. (2007). The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia, 21, 1638–1647.

    Article  CAS  PubMed  Google Scholar 

  118. Couffinhal, T., Dufourcq, P., & Duplaa, C. (2006). Beta-catenin nuclear activation: common pathway between Wnt and growth factor signaling in vascular smooth muscle cell proliferation? Circulation Research, 99, 1287–1289.

    Article  CAS  PubMed  Google Scholar 

  119. Northcott, P. A., et al. (2011). Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathologica, 122, 231–240.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Fan, X., & Eberhart, C. G. (2008). Medulloblastoma stem cells. Journal of Clinical Oncology, 26, 2821–2827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Scotting, P. J., Walker, D. A., & Perilongo, G. (2005). Childhood solid tumours: a developmental disorder. Nature Reviews. Cancer, 5, 481–488.

    Article  CAS  PubMed  Google Scholar 

  122. Yue, S., Chen, Y., & Cheng, S. Y. (2009). Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene, 28, 492–499.

    Article  CAS  PubMed  Google Scholar 

  123. Kim, J. J., et al. (2011). Suppressor of fused controls mid-hindbrain patterning and cerebellar morphogenesis via GLI3 repressor. The Journal of Neuroscience, 31, 1825–1836.

    Article  CAS  PubMed  Google Scholar 

  124. Gulino, A., Di Marcotullio, L., Canettieri, G., De Smaele, E., & Screpanti, I. (2012). Hedgehog/Gli control by ubiquitination/acetylation interplay. Vitamins and Hormones, 88, 211–227.

    Article  CAS  PubMed  Google Scholar 

  125. Lau, A. W., Fukushima, H., & Wei, W. (2012). The Fbw7 and betaTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front Biosci (Landmark Ed), 17, 2197–2212.

    Article  CAS  Google Scholar 

  126. Forget, A., et al. (2014). Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Developmental Cell, 29, 649–661.

    Article  CAS  PubMed  Google Scholar 

  127. Chen, D., et al. (2005). ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell, 121, 1071–1083.

    Article  CAS  PubMed  Google Scholar 

  128. Zhao, H., Ayrault, O., Zindy, F., Kim, J. H., & Roussel, M. F. (2008). Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes & Development, 22, 722–727.

    Article  CAS  Google Scholar 

  129. Cao, Y., et al. (2014). Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Scientific Reports, 4, 4965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Babaei-Jadidi, R., et al. (2011). FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. The Journal of Experimental Medicine, 208, 295–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Davis, R. J., Welcker, M., & Clurman, B. E. (2014). Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell, 26, 455–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, Z., Liu, P., Inuzuka, H., & Wei, W. (2014). Roles of F-box proteins in cancer. Nature Reviews. Cancer, 14, 233–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hede, S. M., Savov, V., Weishaupt, H., Sangfelt, O., & Swartling, F. J. (2014). Oncoprotein stabilization in brain tumors. Oncogene, 33, 4709–4721.

    Article  CAS  PubMed  Google Scholar 

  134. Hartmann, W., et al. (2006). Phosphatidylinositol 3′-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clinical Cancer Research, 12, 3019–3027.

    Article  CAS  PubMed  Google Scholar 

  135. Wlodarski, P., Grajkowska, W., Lojek, M., Rainko, K., & Jozwiak, J. (2006). Activation of Akt and Erk pathways in medulloblastoma. Folia Neuropathologica, 44, 214–220.

    CAS  PubMed  Google Scholar 

  136. Yang, F., et al. (2012). Bortezomib induces apoptosis and growth suppression in human medulloblastoma cells, associated with inhibition of AKT and NF-kB signaling, and synergizes with an ERK inhibitor. Cancer Biology & Therapy, 13, 349–357.

    Article  CAS  Google Scholar 

  137. Van Waes, C. (2007). Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clinical Cancer Research, 13, 1076–1082.

    Article  PubMed  Google Scholar 

  138. Prasad, S., Ravindran, J., & Aggarwal, B. B. (2010). NF-kappaB and cancer: how intimate is this relationship. Molecular and Cellular Biochemistry, 336, 25–37.

    Article  CAS  PubMed  Google Scholar 

  139. Northcott, P. A., Dubuc, A. M., Pfister, S., & Taylor, M. D. (2012). Molecular subgroups of medulloblastoma. Expert Review of Neurotherapeutics, 12, 871–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sunwoo, J. B., et al. (2001). Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clinical Cancer Research, 7, 1419–1428.

    CAS  PubMed  Google Scholar 

  141. Adams, J. (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell, 5, 417–421.

    Article  CAS  PubMed  Google Scholar 

  142. Spiller, S. E., Logsdon, N. J., Deckard, L. A., & Sontheimer, H. (2011). Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo. BMC Cancer, 11, 136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hoesel, B., & Schmid, J. A. (2013). The complexity of NF-kappaB signaling in inflammation and cancer. Molecular Cancer, 12, 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Juvekar, A., et al. (2011). Bortezomib induces nuclear translocation of IkappaBalpha resulting in gene-specific suppression of NF-kappaB—dependent transcription and induction of apoptosis in CTCL. Molecular Cancer Research, 9, 183–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jariel-Encontre, I., Bossis, G., & Piechaczyk, M. (2008). Ubiquitin-independent degradation of proteins by the proteasome. Biochimica et Biophysica Acta, 1786, 153–177.

    CAS  PubMed  Google Scholar 

  146. Pagano, M., et al. (1995). Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science, 269, 682–685.

    Article  CAS  PubMed  Google Scholar 

  147. Maddika, S., et al. (2007). Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resistance Updates, 10, 13–29.

    Article  CAS  PubMed  Google Scholar 

  148. Epstein, F. H., Mitch, W. E., & Goldberg, A. L. (1996). Mechanisms of muscle wasting—the role of the ubiquitin–proteasome pathway. The New England Journal of Medicine, 335, 1897–1905.

    Article  Google Scholar 

  149. Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.

    Article  CAS  PubMed  Google Scholar 

  150. Berkers, C. R., et al. (2005). Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nature Methods, 2, 357–362.

    Article  CAS  PubMed  Google Scholar 

  151. Hideshima, T., et al. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research, 61, 3071–3076.

    CAS  PubMed  Google Scholar 

  152. Jagannath, S., et al. (2004). A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. British Journal of Haematology, 127, 165–172.

    Article  CAS  PubMed  Google Scholar 

  153. Richardson, P. G., et al. (2007). Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood, 110, 3557–3560.

    Article  CAS  PubMed  Google Scholar 

  154. Kane, R. C., Bross, P. F., Farrell, A. T., & Pazdur, R. (2003). Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. The Oncologist, 8, 508–513.

    Article  PubMed  Google Scholar 

  155. Kane, R. C., Farrell, A. T., Sridhara, R., & Pazdur, R. (2006). United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 12, 2955–2960.

    Article  CAS  Google Scholar 

  156. Kane, R. C., et al. (2007). Bortezomib for the treatment of mantle cell lymphoma. Clinical cancer research : an official journal of the American Association for Cancer Research, 13, 5291–5294.

    Article  CAS  Google Scholar 

  157. Potts, B. C., et al. (2011). Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Current Cancer Drug Targets, 11, 254–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Millward, M., et al. (2011). Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Investigational New Drugs, 30, 2303–2317.

    Article  PubMed  CAS  Google Scholar 

  159. Williams, P. G., et al. (2005). New cytotoxic salinosporamides from the marine Actinomycete Salinispora tropica. The Journal of Organic Chemistry, 70, 6196–6203.

    Article  CAS  PubMed  Google Scholar 

  160. Corey, E. J., & Li, W. D. (1999). Total synthesis and biological activity of lactacystin, omuralide and analogs. Chemical & Pharmaceutical Bulletin, 47, 1–10.

    Article  CAS  Google Scholar 

  161. Feling, R. H., et al. (2003). Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angewandte Chemie (International Ed. in English), 42, 355–357.

    Article  CAS  Google Scholar 

  162. Groll, M., Huber, R., & Potts, B. C. M. (2006). Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. Journal of the American Chemical Society, 128, 5136–5141.

    Article  CAS  PubMed  Google Scholar 

  163. Manam, R. R., et al. (2008). Leaving groups prolong the duration of 20S proteasome inhibition and enhance the potency of salinosporamides. Journal of Medicinal Chemistry, 51, 6711–6724.

    Article  CAS  PubMed  Google Scholar 

  164. Miller, C. P., et al. (2011). Specific and prolonged proteasome inhibition dictates apoptosis induction by marizomib and its analogs. Chemico-Biological Interactions, 194, 58–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chauhan, D., et al. (2005). A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell, 8, 407–419.

    Article  CAS  PubMed  Google Scholar 

  166. Kuhn, D. J., et al. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Muchamuel, T., et al. (2009). A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Medicine, 15, 781–787.

    Article  CAS  PubMed  Google Scholar 

  168. Basler, M., Dajee, M., Moll, C., Groettrup, M., & Kirk, C. J. (2010). Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. Journal of Immunology, 185, 634–641.

    Article  CAS  Google Scholar 

  169. Ohshima-Hosoyama, S., Davare, M. A., Hosoyama, T., Nelon, L. D., & Keller, C. (2011). Bortezomib stabilizes NOXA and triggers ROS-associated apoptosis in medulloblastoma. Journal of Neuro-Oncology, 105, 475–483.

    Article  CAS  PubMed  Google Scholar 

  170. Samano, A. K., et al. (2010). Functional evaluation of therapeutic response for a mouse model of medulloblastoma. Transgenic Research, 19, 829–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Taniguchi, E., et al. (2009). Bortezomib reverses a post-translational mechanism of tumorigenesis for patched1 haploinsufficiency in medulloblastoma. Pediatric Blood & Cancer, 53, 136–144.

    Article  Google Scholar 

  172. Grasso, C. S., et al. (2015). Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine, 21, 555–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dimopoulos, M. A., et al. (2017). Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. The Lancet Oncology, 18, 1327–1337.

    Article  CAS  PubMed  Google Scholar 

  174. Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiology of Disease, 37, 13–25.

    Article  CAS  PubMed  Google Scholar 

  175. Zünkeler, B., et al. (1996). Quantification and pharmacokinetics of blood-brain barrier disruption in humans. Journal of Neurosurgery, 85, 1056–1065.

    Article  PubMed  Google Scholar 

  176. Balyasnikova, I. V., Ferguson, S. D., Han, Y., Liu, F., & Lesniak, M. S. (2011). Therapeutic effect of neural stem cells expressing TRAIL and bortezomib in mice with glioma xenografts. Cancer Letters, 310, 148–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Asklund, T., et al. (2012). Synergistic killing of glioblastoma stem-like cells by bortezomib and HDAC inhibitors. Anticancer Research, 32, 2407–2413.

    CAS  PubMed  Google Scholar 

  178. Premkumar, D. R., Jane, E. P., Agostino, N. R., DiDomenico, J. D., & Pollack, I. F. (2013). Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage. Molecular Carcinogenesis, 52, 118–133.

    Article  PubMed  CAS  Google Scholar 

  179. Friday, B. B., et al. (2012). Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro-Oncology, 14, 215–221.

    Article  CAS  PubMed  Google Scholar 

  180. Labussiere, M., Pinel, S., Delfortrie, S., Plenat, F., & Chastagner, P. (2008). Proteasome inhibition by bortezomib does not translate into efficacy on two malignant glioma xenografts. Oncology Reports, 20, 1283–1287.

    CAS  PubMed  Google Scholar 

  181. Vlashi, E., et al. (2010). Differential effects of the proteasome inhibitor NPI-0052 against glioma cells. Translational Oncology, 3, 50–55.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Singh, A. V., et al. (2010). Pharmacodynamic and efficacy studies of the novel proteasome inhibitor NPI-0052 (marizomib) in a human plasmacytoma xenograft murine model. British Journal of Haematology, 149, 550–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Di, K., et al. (2016). Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier. Neuro-Oncology, 18, 840–848.

    Article  PubMed  Google Scholar 

  184. Manton, C. A., et al. (2016). Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo. Scientific Reports, 6, 18953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Berkowitz, A., & Walker, S. (2012). Bortezomib-induced peripheral neuropathy in patients with multiple myeloma. Clinical Journal of Oncology Nursing, 16, 86–89.

    Article  PubMed  Google Scholar 

  186. Argyriou, A. A., Iconomou, G., & Kalofonos, H. P. (2008). Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood, 112, 1593–1599.

    Article  CAS  PubMed  Google Scholar 

  187. Wolf, S., Barton, D., Kottschade, L., Grothey, A., & Loprinzi, C. (2008). Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. European journal of cancer (Oxford, England : 1990), 44, 1507–1515.

    Article  CAS  Google Scholar 

  188. Delforge, M., et al. (2010). Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. The Lancet. Oncology, 11, 1086–1095.

    Article  CAS  PubMed  Google Scholar 

  189. Zou, W., et al. (2006). Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clinical cancer research : an official journal of the American Association for Cancer Research, 12, 273–280.

    Article  CAS  Google Scholar 

  190. Richardson PG et al., paper presented at the American Society of Hematology Meeting Abstract, Nov 01 2011.

  191. Yoo, J. Y., et al. (2014). Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clinical Cancer Research, 20, 3787–3798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yoo, J. Y., et al. (2016). Bortezomib treatment sensitizes oncolytic HSV-1-treated tumors to NK cell immunotherapy. Clinical Cancer Research, 22, 5265–5276.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Leestemaker, Y., et al. (2017). Proteasome activation by small molecules. Cell Chemical Biology, 24, 725–736 e727.

    Article  CAS  PubMed  Google Scholar 

  194. Phuphanich, S., et al. (2010). Phase 1 clinical trial of bortezomib in adults with recurrent malignant glioma. Journal of Neuro-Oncology, 100, 95–103.

    Article  CAS  PubMed  Google Scholar 

  195. Blaney, S. M., et al. (2004). Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study (ADVL0015). Journal of Clinical Oncology, 22, 4804–4809.

    Article  CAS  PubMed  Google Scholar 

  196. Portnow, J., et al. (2012). A phase I study of bortezomib and temozolomide in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 69, 505–514.

    Article  CAS  PubMed  Google Scholar 

  197. Yin, D., et al. (2005). Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene, 24, 344–354.

    Article  CAS  PubMed  Google Scholar 

  198. Riordan, B., Yu, L. J., Hatsis, P., Brockman, A., Daniels, S., Stagliano, N., Finklestein, S., Ren, J., Milton, M., & Miwa, G. (2006). Study of brain and whole blood PK/PD of bortezomib in rat models. Journal of Clinical Oncology, 24, 12036.

    Google Scholar 

  199. Muscal, J. A., et al. (2013). A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916). Pediatric Blood & Cancer, 60, 390–395.

    Article  CAS  Google Scholar 

  200. McCracken, D. J., Celano, E. C., Voloschin, A. D., Read, W. L., & Olson, J. J. (2016). Phase I trial of dose-escalating metronomic temozolomide plus bevacizumab and bortezomib for patients with recurrent glioblastoma. Journal of Neuro-Oncology, 130, 193–201.

    Article  CAS  PubMed  Google Scholar 

  201. Bota, D. A., et al. (2013). Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells’ VEGF production and angiogenesis. Journal of Neurosurgery, 119, 1415–1423.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge research support from the Center for Cancer Epigenetics at MD Anderson, NIH (P30 CA016672, P50 CA127001, R21 NS093387 (to J.C.) and is R01 NS079715 (to V.G.)), and the Thomas Scott Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joya Chandra.

Additional information

Contribution for Cancer and Metastasis Reviews Special Issue: “The Proteasome: an important player in tumor progression and a novel target for cancer therapy.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaky, W., Manton, C., Miller, C.P. et al. The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities. Cancer Metastasis Rev 36, 617–633 (2017). https://doi.org/10.1007/s10555-017-9700-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9700-2

Keywords

Navigation