Skip to main content
Log in

Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An \(E\)\(l_{\mathrm{m}}\) single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alinot C, Masson C (2005) k-\(\varepsilon \) Model for the atmospheric boundary layer under various thermal stratifications. Trans ASME 127:438–443

    Google Scholar 

  • Anderson PS (2009) Measurement of Prandtl number as a function of Richardson number avoiding self-correlation. Boundary-Layer Meteorol 131:345–362

    Article  Google Scholar 

  • Baas P, Steeneveld GJ, van de Wiel H, Holtslag AAM (2006) Exploring self-correlation in flux–gradient relationships for stably stratified conditions. J Atmos Sci 63:3045–3054

    Article  Google Scholar 

  • Beare RJ et al (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118:247–272

    Article  Google Scholar 

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchanges in neutral conditions. J Geophys Res 67:3095–3102

    Article  Google Scholar 

  • Cheng Y, Brutsaert W (2005) Flux–profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Boundary-Layer Meteorol 114:519–538

    Article  Google Scholar 

  • Cullen NJ, Steffen K, Blanken PD (2007) Nonstationarity of turbulent heat fluxes at Summit, Greenland. Boundary-Layer Meteorol 122:439–455

    Article  Google Scholar 

  • Cuxart J et al (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118:273–303

    Article  Google Scholar 

  • Dabberdt WF (1970) A selective climatology of plateau station, Antarctica. J Appl Meteorol 9:311–315

    Article  Google Scholar 

  • Delage Y (1974) A numerical study of the nocturnal atmospheric boundary layer. Q J R Meteorol Soc 100:251–265

    Article  Google Scholar 

  • Djolov GD (1973) Modeling of the interdependent diurnal variation of meteorological elements in the boundary layer. Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada

  • Duynkerke PG (1999) Turbulence, radiation and fog in Dutch stable boundary layers. Boundary-Layer Meteorol 90:447–477

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux profile relationships. Boundary-Layer Meteorol 7:363–372

    Article  Google Scholar 

  • Freedman FR, Jacobson MZ (2003) Modification of the standard k-equation for the stable ABL through enforced consistency with Monin–Obukhov similarity theory. Boundary-Layer Meteorol 106:383–410

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, UK, 316 pp

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116:201–235

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007a) SHEBA flux–profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol 124:315–333

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007b) On the turbulent Prandtl number in the stable atmospheric boundary layer. Boundary-Layer Meteorol 125:329–341

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2012) Outlier problem in evaluating similarity functions in the stable atmospheric boundary layer. Boundary-Layer Meteorol 144:137–155

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2013) The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol 147:51–82. doi:10.1007/s10546-012-9771-0

    Article  Google Scholar 

  • Gryning S-E, Batchvarova E, Brümmer B, Jorgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface layer. Boundary-Layer Meteorol 124:251–268

    Article  Google Scholar 

  • Handorf D, Foken T, Kottmeier C (1999) The stable atmospheric boundary layer over an Antarctic ice sheet. Boundary-Layer Meteorol 91:165–186

    Article  Google Scholar 

  • Hogstrom U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42:55–78

    Article  Google Scholar 

  • Holt T, Raman S (1988) A review of comparative evaluation of multilevel boundary layer parametrizations for first-order and turbulent kinetic energy closure schemes. Rev Geophys 26:761–780

    Article  Google Scholar 

  • Holtslag B (2006) Preface: GEWEX atmospheric boundary-layer study (GABLS) on stable boundary layers. Boundary-Layer Meteorol 118:243–246

    Article  Google Scholar 

  • King JC (1990) Some measurements of turbulence over an Antarctic ice shelf. Q J R Meteorol Soc 116:379–400

    Article  Google Scholar 

  • King JC, Anderson PS (1988) Installation and performance of the STABLE instrumentation at Halley. Br Antarct Surv Bull 79:65–77

    Google Scholar 

  • King JC, Anderson PS (1994) Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf. Boundary-Layer Meteorol 69:101–121

    Article  Google Scholar 

  • King JC, Turner J (1997) Antarctic meteorology and climatology. Cambridge University Press, UK, 409 pp

  • Klipp CL, Mahrt L (2004) Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J R Meteorol Soc 130:2087–2103

    Article  Google Scholar 

  • König G (1985) Roughness length of an Antarctic ice shelf. Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research 55:27–32

  • Kosovic B, Curry JA (2000) A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J Atmos Sci 57:1052–1068

    Article  Google Scholar 

  • Kouznetsov RD, Zilitinkevich SS (2010) On the velocity gradient in stable stratified sheared flows. Part 2: Observations and models. Boundary-Layer Meteorol 135:513–517

    Article  Google Scholar 

  • Lettau HH, Dabberdt WF (1970) Variangular wind spirals. Boundary-Layer Meteorol 1:64–79

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90:375–396

    Article  Google Scholar 

  • Mahrt L, Vickers D (2003) Formulation of turbulent fluxes in the stable boundary layer. J Atmos Sci 60:2538–2548

    Article  Google Scholar 

  • Mann GW, Anderson PS, Mobbs SD (2000) Profile measurements of blowing snow at Halley, Antarctica. J Geophys Res 105:24491–24508

    Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216

    Article  Google Scholar 

  • Sanz Rodrigo J (2011) On Antarctic wind engineering. Ph.D. thesis, Univeristé Libre de Bruxelles and von Karman Institute for Fluid Dynamics, Belgium

  • Sorbjan Z (1986) On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol 34:377–397

    Article  Google Scholar 

  • Sorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice-Hall, Englewood Cliffs, 317 pp

  • Sorbjan Z (2010) Gradient-based scales and similarity laws in the stable boundary layer. Q J R Meteorol Soc 136:1243–1254

    Google Scholar 

  • Sorbjan Z (2012) A study of the stable boundary layer based on a single-column K-theory model. Boundary-Layer Meteorol 142:33–53

    Article  Google Scholar 

  • Sorbjan Z, Grachev AA (2010) An evaluation of the flux–gradient relationship in the stable boundary layer. Boundary-Layer Meteorol 135:385–405

    Article  Google Scholar 

  • Sun J (2011) Vertical variations of mixing length under neutral and stable conditions during CASES99. J Appl Meteorol Clim 50:2030–2041

    Article  Google Scholar 

  • Taylor PA, Delage Y (1971) A note on finite-difference schemes for the surface and planetary boundary layers. Boundary-Layer Meteorol 2:108–121

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20:660–672

    Article  Google Scholar 

  • Weng W, Taylor PA (2003) On modelling the one-dimensional atmospheric boundary layer. Boundary-Layer Meteorol 107:371–400

    Article  Google Scholar 

  • Weng W, Taylor PA (2006) Modelling the one-dimensional stable boundary layer with an E-l turbulence closure scheme. Boundary-Layer Meteorol 118:305–323

    Article  Google Scholar 

  • Wyngaard JC, Coté OR (1972) Cospectral similarity in the atmospheric surface layer. Q J R Meteorol Soc 98:590–603

    Article  Google Scholar 

  • Yagüe C, Redondo JM (1995) A case study of turbulent parameters during the Antarctic winter. Antarct Sci 7:421–433

    Article  Google Scholar 

  • Yagüe C, Maqueda G, Rees JM (2001) Characteristics of turbulence in the lower atmosphere at Halley IV station, Antarctica. Dyn Atmos Ocean 34:205–223

    Article  Google Scholar 

  • Zilitinkevich S, Baklanov A (2002) Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorol 105:389–409

    Article  Google Scholar 

  • Zilitinkevich SS, Esau IN (2007) Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer. Boundary-layer Meteorol 125:193–205

    Article  Google Scholar 

  • Zilitinkevich SS, Mammarella I, Baklanov AA, Joffre SM (2008) The effect of stratification on the aerodynamic roughness length and displacement height. Boundary-Layer Meteorol 129:179–190

    Article  Google Scholar 

  • Zilitinkevich SS, Esau I, Kleeorin N, Rogachevskii I, Kouznetsov RD (2010) On the velocity gradient in stably stratified sheared flows. Part 1: Asymptotic analysis and applications. Boundary-Layer Meteorol 135:505–511

    Article  Google Scholar 

  • Zilitinkevich SS, Elperin T, Kleeorin N, Rogachevskii I, Esau I (2013) A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows. Boundary-Layer Meteorol 146:341–373. doi:10.1007/s10546-012-9768-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Sanz Rodrigo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigo, J.S., Anderson, P.S. Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica. Boundary-Layer Meteorol 148, 517–539 (2013). https://doi.org/10.1007/s10546-013-9831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9831-0

Keywords

Navigation